1
|
Isaev NK, Stelmashook EV, Genrikhs EE, Onishchenko GE. Interaction between mitophagy, cadmium and zinc. J Trace Elem Med Biol 2023; 79:127230. [PMID: 37290313 DOI: 10.1016/j.jtemb.2023.127230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Mitophagy is the selective degradation of mitochondria by autophagy. This process is considered to be one of the stages of mitochondrial quality control, as a result of which damaged depolarized mitochondria are eliminated, thus limiting the formation of reactive oxygen species and the release of apoptogenic factors. Selective degradation of mitochondria by autophagy is one of the main ways to protect cells from cadmium toxicity, which results in dysfunction of the mitochondrial electron transport chain, leading to electron leakage, production of reactive oxygen species and cells death. However, excessive autophagy can be dangerous for cells. Currently, the participation of cadmium ions in normal physiological processes has not been detected. Zn2+, unlike Cd2+, regulate the activity of a large number of functionally important proteins, including transcription factors, enzymes, and adapters. It has been shown that Zn2+ not only participate in autophagy, but are also crucial for basal or induced autophagy. It is likely that zinc drugs can be used to reduce the cadmium toxicity and in the regulation of mithophagy.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, Moscow, Russia; Research Center of Neurology, Moscow, Russia.
| | | | | | | |
Collapse
|
2
|
Lai X, Zhang Y, Wu J, Shen M, Yin S, Yan J. Rutin Attenuates Oxidative Stress Via PHB2-Mediated Mitophagy in MPP +-Induced SH-SY5Y Cells. Neurotox Res 2023; 41:242-255. [PMID: 36738374 DOI: 10.1007/s12640-023-00636-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 02/05/2023]
Abstract
Oxidative stress plays a crucial role in the occurrence and development of Parkinson's disease (PD). Rutin, a natural botanical ingredient, has been shown to have antioxidant properties. Therefore, the aim of this study was to investigate the neuroprotective effects of rutin on PD and the underlying mechanisms. MPP+(1-methyl-4-phenylpyridinium ions)-treated SH-SY5Y cells were used as an in vitro model of PD. Human PHB2-shRNA lentiviral particles were transfected into SH-SY5Y cells to interfere with the expression of Prohibitin2 (PHB2). The oxidative damage of cells was analyzed by detecting intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and mitochondrial membrane potential (MMP). Western blotting was used to detect the protein expression of antioxidant factors such as nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase-1 (NQO-1), and mitophagy factors PHB2, translocase of outer mitochondrial membrane 20 (TOM20), and LC3II/LC3I (microtubule-associated protein II light chain 3 (LC3II) to microtubule-associated protein I light chain 3 (LC3I)). In addition, we also examined the expression of PHB2 and LC3II/LC3I by immunofluorescence staining. MPP+ treatment significantly increased the generation of ROS and MDA and the level of MMP depolarization and decreased the protein expression of Nrf2, HO-1, NQO1, TOM20, PHB2, and LC3II/LC3I. In MPP+-treated SH-SY5Y cells, rutin significantly decreased the generation of ROS and MDA and the level of MMP depolarization and increased the protein expression of Nrf2, HO-1, NQO-1, TOM20, PHB2, and LC3II/LC3I. However, the protective role of rutin was inhibited in PHB2-silenced cells. Rutin attenuates oxidative damage which may be associated with PHB2-mediated mitophagy in MPP+-induced SH-SY5Y cells. Rutin might be used as a potential drug for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Yongjiang Zhang
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Mengmeng Shen
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Shiyi Yin
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Junqiang Yan
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China. .,Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| |
Collapse
|
3
|
Pohanka M. New uses of Melatonin as a Drug, a Review. Curr Med Chem 2022; 29:3622-3637. [PMID: 34986763 DOI: 10.2174/0929867329666220105115755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
Melatonin is a simple compound with a proper chemical name N-acetyl-5-methoxy tryptamine and known as a hormone controlling circadian rhythm. Humans produce melatonin at night which is the reason for sleeping in the night and awakening over the day. Melatonin interacts with melatonin receptors MT1 and MT2 but it was also revealed that melatonin is a strong antioxidant and it also has a role in regulation of cell cycle. Currently, melatonin is used as a drug for some types of sleep disorder but the recent research points to the fact that melatonin can also serve for the other purposes including prophylaxis or therapy of lifestyle diseases, cancer, neurodegenerative disorders and exposure to chemicals. This review summarizes basic facts and direction of the current research on melatonin. The actual literature was scrutinized for the purpose of this review.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
4
|
Bell K, Rosignol I, Sierra-Filardi E, Rodriguez-Muela N, Schmelter C, Cecconi F, Grus F, Boya P. Age related retinal Ganglion cell susceptibility in context of autophagy deficiency. Cell Death Discov 2020; 6:21. [PMID: 32337073 PMCID: PMC7165178 DOI: 10.1038/s41420-020-0257-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is a common age-related disease leading to progressive retinal ganglion cell (RGC) death, visual field defects and vision loss and is the second leading cause of blindness in the elderly worldwide. Mitochondrial dysfunction and impaired autophagy have been linked to glaucoma and induction of autophagy shows neuroprotective effects in glaucoma animal models. We have shown that autophagy decreases with aging in the retina and that autophagy can be neuroprotective for RGCs, but it is currently unknown how aging and autophagy deficiency impact RGCs susceptibility and survival. Using the optic nerve crush model in young and olWelcome@1234d Ambra1 +/gt (autophagy/beclin-1 regulator 1+/gt) mice we analysed the contribution of autophagy deficiency on retinal ganglion cell survival in an age dependent context. Interestingly, old Ambra1 +/gt mice showed decreased RGC survival after optic nerve crush in comparison to old Ambra1 +/+, an effect that was not observed in the young animals. Proteomics and mRNA expression data point towards altered oxidative stress response and mitochondrial alterations in old Ambra1 +/gt animals. This effect is intensified after RGC axonal damage, resulting in reduced oxidative stress response showing decreased levels of Nqo1, as well as failure of Nrf2 induction in the old Ambra1 +/gt. Old Ambra1 +/gt also failed to show increase in Bnip3l and Bnip3 expression after optic nerve crush, a response that is found in the Ambra1 +/+ controls. Primary RGCs derived from Ambra1 +/gt mice show decreased neurite projection and increased levels of apoptosis in comparison to Ambra1 +/+ animals. Our results lead to the conclusion that oxidative stress response pathways are altered in old Ambra1 +/gt mice leading to impaired damage responses upon additional external stress factors.
Collapse
Affiliation(s)
- Katharina Bell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ines Rosignol
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Elena Sierra-Filardi
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Natalia Rodriguez-Muela
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Deutsche Zentrum für Neurodegenerative Erkrankungen e.V, DZNE/German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Carsten Schmelter
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Franz Grus
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
5
|
Messina F, Cecconi F, Rodolfo C. Do You Remember Mitochondria? Front Physiol 2020; 11:271. [PMID: 32292356 PMCID: PMC7119339 DOI: 10.3389/fphys.2020.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Dementia is one among the consequences of aging, and amnesia is often one of the most common symptoms. The lack of memory, as a consequence of both “healthy” aging or neurodegenerative conditions, such as in Alzheimer’s disease, has a dramatic impact on the patient’s lifestyle. In fact, the inability to recall information made by a previous experience could not only alter the interaction with the environment, but also lead to a loss of identity. Mitochondria are key regulators of brain’s activity; thanks to their “dynamic organelles” nature they constantly rearrange in the cell body and move along axons and dendrites, changing in dimension, shape, and location, accordingly to the cell’s energy requirements. Indeed, the energy they can provide is essential to maintain synaptic plasticity and to ensure transmission through presynaptic terminals and postsynaptic spines. Stressful conditions, like the ones found in neurodegenerative diseases, seriously impair mitochondria bioenergetic, leading to both loss of proper neuronal interaction and of neuron themselves. Here, we highlighted the current knowledge about the role of mitochondria and mitochondrial dynamics in relation to neurodegenerative disorders linked to aging. Furthermore, we discuss the obstacles as well as the future perspectives aimed to enlarge our knowledge about mitochondria as target for new therapeutic strategies to slow down aging and neurodegenerative disease’s symptoms.
Collapse
Affiliation(s)
- Flavia Messina
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Paediatric Haematology, Oncology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|