1
|
Zhang MF, Fan BY, Zhang CY, Chen K, Tian WD, Zhang TH. Activity waves in condensed excitable phases of Quincke rollers. SOFT MATTER 2025; 21:927-934. [PMID: 39803758 DOI: 10.1039/d4sm01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Traveling waves are universal in excitable systems; yet, the microscopic dynamics of wave propagation is inaccessible in conventional excitable systems. Here, we show that active colloids of Quincke rollers driven by a periodic electric field can form condensed excitable phases. Distinct from existing excitable media, condensed excitable colloids can be tuned reversibly between active liquids and active crystals in which two distinct waves can be excited, respectively. In active liquids, waves propagate by splitting and cross over each other, like sound waves, in collision. In active crystals, waves annihilate or converge, like shock waves, in collision. We show that the microscopic dynamics of sound waves is dominated by electrostatic repulsions while the dynamics of shock waves is encoded with a local density-dependent memory of propulsion. The condensed excitable colloids with tunable and controllable dynamics offer unexplored opportunities for the study of nonlinear phenomena.
Collapse
Affiliation(s)
- Meng Fei Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| | - Bao Ying Fan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| | - Chuan Yu Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| | - Tian Hui Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| |
Collapse
|
2
|
Holland L, de Regt HW, Drukarch B. Two scientific perspectives on nerve signal propagation: how incompatible approaches jointly promote progress in explanatory understanding. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:43. [PMID: 39570523 PMCID: PMC11582304 DOI: 10.1007/s40656-024-00644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
We present a case study of two scientific perspectives on the phenomenon of nerve signal propagation, a bio-electric and a thermodynamic perspective, and compare this case with two accounts of scientific perspectivism: those of Michela Massimi and Juha Saatsi, respectively. We demonstrate that the interaction between the bio-electric perspective and the thermodynamic perspective can be captured in Saatsi's terms of progress in explanatory understanding. Using insights from our case study, we argue that both the epistemic and pragmatic dimensions of scientific understanding are important for increasing explanatory understanding of phenomena. The epistemic dimension of understanding is important for increasing the number of actually answered what-if-things-had-been-different questions about a phenomenon, the pragmatic dimension for pointing out the potentially answerable what-if questions that have been overlooked or purposefully neglected thus far. Exposing the limitations of the acquired understanding within a particular perspective can be achieved by criticizing the assumptions that have been adopted to make models of the perspective intelligible, but that are considered problematic from a rival perspective.
Collapse
Affiliation(s)
- Linda Holland
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Henk W de Regt
- Institute for Science in Society (ISiS), Radboud University, P.O. Box 9010 (postvak 77), 6500 GL, Nijmegen, The Netherlands.
| | - Benjamin Drukarch
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Feng R, Sheng H, Lian Y. Advances in using ultrasound to regulate the nervous system. Neurol Sci 2024; 45:2997-3006. [PMID: 38436788 DOI: 10.1007/s10072-024-07426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Ultrasound is a mechanical vibration with a frequency greater than 20 kHz. Due to its high spatial resolution, good directionality, and convenient operation in neural regulation, it has recently received increasing attention from scientists. However, the mechanism by which ultrasound regulates the nervous system is still unclear. This article mainly explores the possible mechanisms of ultrasound's mechanical effects, cavitation effects, thermal effects, and the rise of sonogenetics. In addition, the essence of action potential and its relationship with ultrasound were also discussed. Traditional theory treats nerve impulses as pure electrical signals, similar to cable theory. However, this theory cannot explain the phenomenon of inductance and cell membrane bulging out during the propagation of action potential. Therefore, the flexoelectric effect of cell membrane and soliton model reveal that action potential may also be a mechanical wave. Finally, we also elaborated the therapeutic effect of ultrasound on nervous system disease such as epilepsy, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanqing Sheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Idris Z, Zakaria Z, Yee AS, Fitzrol DN, Ismail MI, Ghani ARI, Abdullah JM, Hassan MH, Suardi N. Light and the Brain: A Clinical Case Depicting the Effects of Light on Brainwaves and Possible Presence of Plasma-like Brain Energy. Brain Sci 2024; 14:308. [PMID: 38671960 PMCID: PMC11047981 DOI: 10.3390/brainsci14040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Light is an electromagnetic radiation that has visible and invisible wavelength spectrums. Visible light can only be detected by the eyes through the optic pathways. With the presence of the scalp, cranium, and meninges, the brain is seen as being protected from direct exposure to light. For that reason, the brain can be viewed as a black body lying inside a black box. In physics, a black body tends to be in thermal equilibrium with its environment and can tightly regulate its temperature via thermodynamic principles. Therefore, a healthy brain inside a black box should not be exposed to light. On the contrary, photobiomodulation, a form of light therapy for the brain, has been shown to have beneficial effects on some neurological conditions. The proposed underlying mechanisms are multiple. Herein, we present our intraoperative findings of rapid electrocorticographic brainwave changes when the brain was shone directly with different wavelengths of light during awake brain surgery. Our findings provide literature evidence for light's ability to influence human brain energy and function. Our proposed mechanism for these rapid changes is the presence of plasma-like energy inside the brain, which causes fast brain activities that are akin to lightning strikes.
Collapse
Affiliation(s)
- Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (A.S.Y.); (D.N.F.); (M.I.I.); (A.R.I.G.); (J.M.A.)
- Brain and Behavior Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zaitun Zakaria
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (A.S.Y.); (D.N.F.); (M.I.I.); (A.R.I.G.); (J.M.A.)
- Brain and Behavior Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ang Song Yee
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (A.S.Y.); (D.N.F.); (M.I.I.); (A.R.I.G.); (J.M.A.)
- Brain and Behavior Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Diana Noma Fitzrol
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (A.S.Y.); (D.N.F.); (M.I.I.); (A.R.I.G.); (J.M.A.)
- Brain and Behavior Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Muhammad Ihfaz Ismail
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (A.S.Y.); (D.N.F.); (M.I.I.); (A.R.I.G.); (J.M.A.)
- Brain and Behavior Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Abdul Rahman Izaini Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (A.S.Y.); (D.N.F.); (M.I.I.); (A.R.I.G.); (J.M.A.)
- Brain and Behavior Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (A.S.Y.); (D.N.F.); (M.I.I.); (A.R.I.G.); (J.M.A.)
- Brain and Behavior Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Mohd Hasyizan Hassan
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Anesthesiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nursakinah Suardi
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| |
Collapse
|
5
|
Drukarch B, Wilhelmus MMM. Thinking about the action potential: the nerve signal as a window to the physical principles guiding neuronal excitability. Front Cell Neurosci 2023; 17:1232020. [PMID: 37701723 PMCID: PMC10493309 DOI: 10.3389/fncel.2023.1232020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
Ever since the work of Edgar Adrian, the neuronal action potential has been considered as an electric signal, modeled and interpreted using concepts and theories lent from electronic engineering. Accordingly, the electric action potential, as the prime manifestation of neuronal excitability, serving processing and reliable "long distance" communication of the information contained in the signal, was defined as a non-linear, self-propagating, regenerative, wave of electrical activity that travels along the surface of nerve cells. Thus, in the ground-breaking theory and mathematical model of Hodgkin and Huxley (HH), linking Nernst's treatment of the electrochemistry of semi-permeable membranes to the physical laws of electricity and Kelvin's cable theory, the electrical characteristics of the action potential are presented as the result of the depolarization-induced, voltage- and time-dependent opening and closure of ion channels in the membrane allowing the passive flow of charge, particularly in the form of Na+ and K+ -ions, into and out of the neuronal cytoplasm along the respective electrochemical ion gradient. In the model, which treats the membrane as a capacitor and ion channels as resistors, these changes in ionic conductance across the membrane cause a sudden and transient alteration of the transmembrane potential, i.e., the action potential, which is then carried forward and spreads over long(er) distances by means of both active and passive conduction dependent on local current flow by diffusion of Na+ ion in the neuronal cytoplasm. However, although highly successful in predicting and explaining many of the electric characteristics of the action potential, the HH model, nevertheless cannot accommodate the various non-electrical physical manifestations (mechanical, thermal and optical changes) that accompany action potential propagation, and for which there is ample experimental evidence. As such, the electrical conception of neuronal excitability appears to be incomplete and alternatives, aiming to improve, extend or even replace it, have been sought for. Commonly misunderstood as to their basic premises and the physical principles they are built on, and mistakenly perceived as a threat to the generally acknowledged explanatory power of the "classical" HH framework, these attempts to present a more complete picture of neuronal physiology, have met with fierce opposition from mainstream neuroscience and, as a consequence, currently remain underdeveloped and insufficiently tested. Here we present our perspective that this may be an unfortunate state of affairs as these different biophysics-informed approaches to incorporate also non-electrical signs of the action potential into the modeling and explanation of the nerve signal, in our view, are well suited to foster a new, more complete and better integrated understanding of the (multi)physical nature of neuronal excitability and signal transport and, hence, of neuronal function. In doing so, we will emphasize attempts to derive the different physical manifestations of the action potential from one common, macroscopic thermodynamics-based, framework treating the multiphysics of the nerve signal as the inevitable result of the collective material, i.e., physico-chemical, properties of the lipid bilayer neuronal membrane (in particular, the axolemma) and/or the so-called ectoplasm or membrane skeleton consisting of cytoskeletal protein polymers, in particular, actin fibrils. Potential consequences for our view of action potential physiology and role in neuronal function are identified and discussed.
Collapse
Affiliation(s)
| | - Micha M. M. Wilhelmus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|