1
|
Zhang C, Atri P, Nallasamy P, Parte S, Rauth S, Nimmakayala RK, Marimuthu S, Chirravuri-Venkata R, Bhatia R, Halder S, Shah A, Cox JL, Smith L, Kumar S, Foster JM, Kukreja RC, Seshacharyulu P, Ponnusamy MP, Batra SK. Small molecule inhibitor against onco-mucins disrupts Src/FosL1 axis to enhance gemcitabine efficacy in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 551:215922. [PMID: 36285687 PMCID: PMC10124158 DOI: 10.1016/j.canlet.2022.215922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Mucin MUC4 is an aberrantly expressed oncogene in pancreatic ductal adenocarcinoma (PDAC), yet no pharmacological inhibitors have been identified to target MUC4. Here, we adapted an in silico screening method using the Cancer Therapeutic Response Database (CTRD) to Identify Small Molecule Inhibitors against Mucins (SMIMs). We identified Bosutinib as a candidate drug to target oncogenic mucins among 126 FDA-approved drugs from CTRD screening. Functionally, Bosutinib treatment alone/and in combination with gemcitabine (Gem)/5' fluorouracil (5FU) reduced in vitro viability, migration, and colony formation in multiple PDAC cell lines as well as human PDAC organoid prolifertaion and growth and in vivo xenograft growth. Further, biochemical and molecular analyses showed that Bosutinib exhibited these functional effects by downregulating MUC4 mucin at both transcript and translation levels in a dose- and time-dependent manner. Mechanistically, global transcriptome analysis in PDAC cells upon treatment with Bosutinib revealed disruption of the Src-ERK/AKT-FosL1 pathway, leading to decreased expression of MUC4 and MUC5AC mucins. Taken together, Bosutinib is a promising, novel, and highly potent SMIMs to target MUC4/MUC5AC mucins. This mucin-targeting effect of Bosutinib can be exploited in the future with cytotoxic agents to treat mucinous tumors.
Collapse
Affiliation(s)
- Chunmeng Zhang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason M Foster
- Department of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | | | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Yilmaz S, Alkan T, Ballar Kirmizibayrak P. A new underlying mechanism for the neuroprotective effect of bosutinib: Reverting toxicity-induced PARylation in SIN1-mediated neurotoxicity. J Biochem Mol Toxicol 2021; 35:e22915. [PMID: 34519134 DOI: 10.1002/jbt.22915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
Increased levels of reactive oxygen and nitrogen species play an important role in the development and progression of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The overproduction of these highly reactive chemical species leads to DNA damage and subsequent activation of the poly(ADP-ribose)polymerase (PARP) enzyme. Several studies have demonstrated the potential use of PARP inhibitors for neuroprotection. We previously reported that the dual Src/Abl kinase inhibitor bosutinib (BOS) decreases PARP activity and acts as a chemosensitizer in cancer cells. In this study, we evaluated the neuroprotective potential of BOS with respect to its inhibitory effect on cellular poly(ADP-ribos)ylation (PARylation) using a 3-morpholinosydnonimine (SIN1)-mediated cellular toxicity model. Our data suggest that pretreatment with BOS, especially at lower doses, significantly decreased the level of SIN1-induced cellular PARylation. This regulation pattern of PARylation was found to be associated with the protective effect of BOS against SIN1 on the viability of retinoic acid-differentiated SH-SY5Y cells. Furthermore, while PARP-1 expression was decreased, phosphorylation of SAPK/JNK was not reverted at the observed neuroprotective doses of BOS. In conclusion, we suggest a novel mechanism for the neuroprotective effect of BOS involving the inhibition of cellular PARylation.
Collapse
Affiliation(s)
- Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.,Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Turkey
| | - Tolgaç Alkan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Petek Ballar Kirmizibayrak
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.,Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|