1
|
Chuang AEY, Chen YL, Nguyen HT, Lu HT, Liu CH. Sequential management of burn wound healing stages through biointelligence-inspired platelet extracellular vesicle-encapsulated photodynamic diferuloylmethane. NANOSCALE 2024; 16:16089-16106. [PMID: 39092551 DOI: 10.1039/d4nr01500b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The process of wound healing is a complex, multi-phase phenomenon crucial for optimal tissue regeneration. Traditional drug delivery systems often target specific phases of wound repair, neglecting the dynamic interplay among the stages. This limitation highlights the need for comprehensive delivery systems that cater to the holistic needs of wound healing, enhancing tissue regeneration efficiency. Herein, we explored the utility of platelet-derived extracellular vesicles (pEVs) as carriers for the phototherapeutic diferuloylmethane (DIF), resulting in a formulation termed DIF@pEVs, which is designed to sequentially address the distinct phases of wound healing. Initially, upon exposure to light, administered DIF@pEVs generate photodynamic therapy-derived reactive oxygen species during the early inflammatory phase. This generation of ROS aims to modulate the inflammatory response, induce the protective mechanisms of heat shock proteins, and kickstart the tissue regeneration process. Following this initial phase, the remaining DIF and pEVs persist in promoting tissue repair and regeneration. Ultimately, it reduces inflammation, speeds up the healing process, and promotes vascular and follicular formation in a model of burn wound skin damage, thereby supporting skin regeneration. The deployment of DIF@pEVs represents an advancement in regenerative medicine, providing a precise, versatile approach to fostering regeneration across a wide range of clinical scenarios.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| | - Yo-Lin Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Hsien-Tsung Lu
- Department of Orthopedics, College of Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| |
Collapse
|
2
|
Parra-Muñoz N, López-Monsalves V, Espinoza-González R, Aravena D, Pizarro N, Soler M. Synthesis and Optical Properties of a Novel Hybrid Nanosystem Based on Covalently Modified nSiO 2 Nanoparticles with a Curcuminoid Molecule. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1022. [PMID: 38921898 PMCID: PMC11207103 DOI: 10.3390/nano14121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
A new curcuminoid molecule (3) has been designed and synthesized, containing a central -(CH2)2-COOH chain at the α carbon of the keto-enol moiety in the structure. The carboxylic acid group is added to react with exposed amino groups on silica oxide nanoparticles (nSiO2), forming an amide bond to attach the curcuminoid moiety to the nSiO2 covalently. The Kaiser test quantifies the functionalization degree, yielding 222 μmol of curcuminoid per gram of nanoparticles. The synthesized hybrid nanosystem, nSiO2-NHCO-CCM, displays significant emission properties, with a maximum emission at 538 nm in dichloromethane, similar to curcuminoid 1 (without the central chain), which emits at 565 nm in the same solvent. Solvent-induced spectral effects on the absorption and emission bands of the new hybrid nanosystem are confirmed, similar to those observed for the free curcuminoid (1). The new nanosystem is evaluated in the presence of kerosene in water, showing an emission band at 525 nm as a detection response. The ability of nSiO2-NHCO-CCM to change its fluorescence when interacting with kerosene in water is notable, as it overcomes the limitation caused by the insolubility of free curcuminoid 1 in water, allowing for the exploitation of its properties when connected to the water-stable nanosystem for future detection studies.
Collapse
Affiliation(s)
- Nicole Parra-Muñoz
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago 8370456, Chile (R.E.-G.)
- Centro de Materiales para la Transición y Sostenibilidad Energética, Comisión Chilena de Energía Nuclear, Ruta 68, km 20, Santiago 7600713, Chile
| | - Valentina López-Monsalves
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago 8370456, Chile (R.E.-G.)
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Rodrigo Espinoza-González
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago 8370456, Chile (R.E.-G.)
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago 9170002, Chile;
| | - Nancy Pizarro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Viña del Mar 2520000, Chile;
| | - Monica Soler
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago 8370456, Chile (R.E.-G.)
| |
Collapse
|
3
|
Li M, Fang G, Zahid F, Saleem R, Ishrat G, Ali Z, Naeem M, Din FU. Co-delivery of paclitaxel and curcumin loaded solid lipid nanoparticles for improved targeting of lung cancer: In vitro and in vivo investigation. Heliyon 2024; 10:e30290. [PMID: 38720725 PMCID: PMC11076978 DOI: 10.1016/j.heliyon.2024.e30290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The objective of this study was to develop nanotechnology-mediated paclitaxel (PAC) and curcumin (CUR) co-loaded solid lipid nanoparticles (PAC-CUR-SLNs) for the treatment of lung cancer, which is a leading cause of death worldwide. Around 85 % cases of lungs cancer constitute non-small cell lung cancer (NSCLC). PAC-CUR-SLNs were prepared via high pressure homogenization. The in vitro drug release of PAC-CUR-SLNs was checked followed by their in vitro cytotoxic investigation using adenocarcinomic human alveolar basal epithelial cells (A549) cell lines. Anticancer effects along with side effects of the synergistic delivery of PAC-CUR-SLNs were studied in vivo, using BALB/c mice. PAC-CUR-SLNs were nano sized (190 nm), homogeneously disseminated particles with %IE of both PAC and CUR above 94 %. PAC-CUR-SLNs released PAC and CUR in a controlled fashion when compared with free drug suspensions. The cytotoxicity of PAC-CUR-SLNs was higher than individual drug-loaded SLNs and pure drugs. Moreover, the co-delivery displayed synergistic effect, indicating potential of PAC-CUR-SLNs in lung cancer treatment. In vivo tumor investigation of PAC-CUR-SLNs exhibited 12-fold reduced tumor volume and almost no change in body weight of BALB/c mice, when compared with the experimental groups including control group. The inhibition of tumor rate on day 28 was 82.7 % in the PAC-CUR-SLNs group, which was significantly higher than the pure drugs and monotherapies. It can be concluded that, encapsulating the co-loaded antitumor drugs like PAC-CUR in SLNs may help in improved targeting of the tumor with enhanced anticancer effect.
Collapse
Affiliation(s)
- Mao Li
- Guangxi Higher Education Key Laboratory for the Research of Du-related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Gang Fang
- Guangxi Higher Education Key Laboratory for the Research of Du-related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Fatima Zahid
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Raheela Saleem
- College of Pharmacy, Liaquat University of Medical and Health Sciences Jamshoro, Pakistan
| | - Ghazala Ishrat
- Department of Pharmaceutics, Faculty of Pharmacy, Salim Habib University, Karachi, Pakistan
| | - Zakir Ali
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Muhammad Naeem
- National University of Medical Sciences, Rawalpindi, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| |
Collapse
|
4
|
Sharma G, Saini SK, Mulchandani K, Bheemaraju A, Lal C. Investigation of ultrafast carrier dynamics in curcumin dye for environment friendly dye-sensitized solar cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121175-121181. [PMID: 37950128 DOI: 10.1007/s11356-023-30668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Natural dyes have been widely employed in the fabrication of dye-sensitized solar cells (DSSCs). DSSCs are favored for their cost-effective, and simple fabrication process relies on metal-based and organic dyes. The choice of dyes greatly affects the performance of DSSCs. DSSCs have found a lot of applications in indoor, solar power gadgets with reasonable efficiency up to 13%. Nonetheless, despite advances in DSSC technology, the complex photophysics and excited state dynamics associated with natural dyes employed in DSSCs remain elusive and have not been adequately investigated. This information gap emphasizes the need for more study and analysis into the behavior of these dyes, since understanding their underlying principles might lead to major improvements in DSSC performance and efficiency. In this work, we have investigated the fundamental characteristics and excited-state carrier dynamics of natural dye curcumin using ultrafast transient absorption (TA) spectroscopy technique. The curcumin dye shows delay time-dependent positive and negative signals in the TA spectra, which are related to excited state absorption and stimulated emission. We also found that hydrogen bonding and polarity effect of solvent significantly influence the carrier dynamics of curcumin. Ultrafast lifetime component indicates that hydrogen-bond rearrangements are involved in the kinetics of the relaxation process of the S1 state of curcumin photo-sensitizer.
Collapse
Affiliation(s)
- Govind Sharma
- Department of Physics, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India
- Department of Physics, Rajiv Gandhi Govt. P.G. College, Mandsaur (M.P.), 458001, India
| | - Saurabh K Saini
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Komal Mulchandani
- Department of Physics, Rajiv Gandhi Govt. P.G. College, Mandsaur (M.P.), 458001, India
| | - Amarnath Bheemaraju
- Department of Applied Sciences, School of Engineering and Technology, BML University, Gurgaon Sidhrawali, Haryana, 122413, India
| | - Chhagan Lal
- Department of Physics, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
- Centre for Non-Conventional Energy Resources, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| |
Collapse
|
5
|
Mankotia P, Sharma K, Sharma V, Mishra YK, Kumar V. Curcumin-loaded Butea monosperma gum-based hydrogel: A new excipient for controlled drug delivery and anti-bacterial applications. Int J Biol Macromol 2023; 242:124703. [PMID: 37141967 DOI: 10.1016/j.ijbiomac.2023.124703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
The wide spectrum of applications provided by curcumin has attracted researchers worldwide to identify its molecular targets and employ it in various biomedical applications. The present research work focuses on the development of a Butea monosperma gum-based hydrogel encapsulated with curcumin and further employing it for two diverse applications, i.e., drug delivery and anti-bacterial application. A central composite design was utilized for the optimization of significant process variables to achieve maximum swelling. A maximum of 662 % swelling was attained at the initiator (0.06 g), monomer (3 ml), crosslinker (0.08 g), solvent (14 ml), and time (60 s). Furthermore, the characterization of the synthesized hydrogel was performed via FTIR, SEM, TGA, H1-NMR, and XRD analysis. Various important properties like swelling rate under different solutions, water retention capacity, re-swelling capability, porosity, and density measurement suggested that the prepared hydrogel exhibited a highly stable crosslinked network with high porosity (0.23) and density (62.5 g/cm3) values. The encapsulation efficiency of curcumin in the hydrogel was reported to be 93 % and 87.3 %, respectively, wherein BM-g-poly(AA) ~ Cur exhibited excellent sustained pH-responsive site release of curcumin at two different pH values, with the maximum amount of release taking place at pH 7.4 (792 ppm) and a minimum at pH 5 (550 ppm) due to the lesser ionization of the functional groups present in the hydrogel at a lower pH value. Additionally, the results from the pH shock studies indicated our material to be stable and efficient even with fluctuations in pH, resulting in the optimal amount of drug release at each pH range. Furthermore, anti-bacterial studies revealed that the synthesized BM-g-poly(AA) ~ Cur was effective against both gram-negative and gram-positive bacteria, with maximum values of zones of inhibition of 16 mm in diameter, thereby showing the best results in comparison to the already developed matrices to date. As a result, the newly discovered BM-g-poly(AA) ~ Cur properties reflect the hydrogel network's suitability for drug release and anti-bacterial applications.
Collapse
Affiliation(s)
- Priyanka Mankotia
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, India
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, India.
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark.
| | - Vijay Kumar
- Department of Physics, National Institute of Technology, Hazratbal-19006, Srinagar, J&K, India; Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300, South Africa.
| |
Collapse
|
6
|
Esmaili S, Zinsaz P, Ahmadi O, Najian Y, Vaghari H, Jafarizadeh-Malmiri H. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Using hydro-alcoholic extract of Willow leaf, zinc oxide nanoparticles (ZnO NPs) were synthesized via four accelerated different heating methods namely, Bain-Marie heating (40 °C for 2 h), Conventional heating with stirrer (80 °C for 2 h), hydrothermal autoclave (1.5 atm and 121 °C for 15 min) and microwave irradiation (800 W and 160 °C for 3 min). Calcination process was finally completed on the obtained colloidal solutions in a furnace (350 °C for 2 h). The characteristics of the resulted ZnO NPs including particle size, grain size, crystallinity, specific surface area, morphology, photocatalytic, antioxidant bactericidal activities were estimated using X-ray diffractometry, scanning electron microscopy and Ultraviolet-visible spectroscopy techniques. Attained results indicated that among four different utilized synthetic methods, the fabricated ZnO NPs via Bain-Marie heating, had desired physico-chemical characteristics and bactericidal effect including small particle size (70 nm), high specific area (284 m2/gr), antioxidant activity (28.5%), photocatalytic activity (degradation of 50% of Methylene Blue), and bactericidal effects against Escherichia coli (clear zone diameter of 1.4 ± 0.1 cm) and Staphylococcus aureus (1.3 ± 0.1 cm).
Collapse
Affiliation(s)
- Sahar Esmaili
- Department of Food Engineering, Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Paniz Zinsaz
- Department of Food Science and Technology, Mamaghan Branch , Islamic Azad University , Mamaghan , Iran
| | - Omid Ahmadi
- Department of Food Engineering, Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Yahya Najian
- Research and Development Department , Najian Herbal Group , East Azarbaijan , Tabriz , Iran
| | - Hamideh Vaghari
- Department of Food Engineering, Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Hoda Jafarizadeh-Malmiri
- Department of Food Engineering, Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| |
Collapse
|
7
|
Sayyar Z, Jafarizadeh-Malmiri H, Beheshtizadeh N. A study on the anticancer and antimicrobial activity of Curcumin nanodispersion and synthesized ZnO nanoparticles. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Development of a Curcumin-Loaded Lecithin/Chitosan Nanoparticle Utilizing a Box-Behnken Design of Experiment: Formulation Design and Influence of Process Parameters. Polymers (Basel) 2022; 14:polym14183758. [PMID: 36145903 PMCID: PMC9505816 DOI: 10.3390/polym14183758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022] Open
Abstract
Curcumin (CUR) has impressive pharmacologic properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activity. However, the pharmaceutical application of CUR is limited due to its poor aqueous solubility and low bioavailability. The development of novel formulations has attracted considerable attention to the idea of applying nanobiotechnology to improve the therapeutic efficacy of these challenging compounds. In this study, CUR-loaded lecithin−chitosan nanoparticles (CUR/LCSNPs) were developed and optimized by the concentration of chitosan, lecithin, and stirring speed by a 3-factorial Box-Behnken statistical design, resulting in an optimal concentration of chitosan (A) and lecithin (B) with a 1200 rpm stirring speed (C), with applied constraints of minimal average particle size (Y1), optimal zeta potential (Y2), and maximum entrapment efficiency (%EE) (Y3). The mean particle size of the checkpoint formulation ranged from 136.44 ± 1.74 nm to 267.94 ± 3.72, with a zeta potential of 18.5 ± 1.39 mV to 36.8 ± 3.24 mV and %EE of 69.84 ± 1.51% to 78.50 ± 2.11%. The mean particle size, zeta potential, %EE, and % cumulative drug release from the optimized formulation were 138.43 ± 2.09 nm, +18.98 ± 0.72 mV, 77.39 ± 1.70%, and 86.18 ± 1.5%, respectively. In vitro drug release followed the Korsmeyer−Peppas model with Fickian diffusion (n < 0.45). The optimized technique has proven successful, resulting in a nanoformulation that can be used for the high loading and controlled release of lipophilic drugs.
Collapse
|
9
|
Singh R, Sharma R, Chauhan M, Sharma D. Structurally identified curcumin-Ag/ZnO nanocomposite having antibacterial effect: an investigation. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Tabrizi SM, Javadi A, Anarjan N, Mortazavi Tabrizi SJ, Mirzaei H. Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Garlic oil in water nanoemulsion was resulted through subcritical water method (temperature of 120 °C and pressure of 1.5 bar, for 2 h), using aponin, as emulsifier. Based on the prepared garlic oil nanoemulsion, astaxanthin–garlic oil nanoemulsions were prepared using spontaneous microemulsification technique. Response surface methodology was employed to evaluate the effects of independent variables namely, amount of garlic oil nanoemulsion (1–9 mL) and amount of provided astaxanthin powder (1–9 g) on particle size and polydispersity index (PDI) of the resulted nanoemulsions. Results of optimization indicated that well dispersed and spherical nanodroplets were formed in the nanoemulsions with minimum particle size (76 nm) and polydispersity index (PDI, 0.358) and maximum zeta potential value (−8.01 mV), using garlic oil nanoemulsion amount of 8.27 mL and 4.15 g of astaxanthin powder. Strong antioxidant activity (>100%) of the prepared astaxanthin–garlic oil nanoemulsion, using obtained optimum amounts of the components, could be related to the highest antioxidant activity of the colloidal astaxanthin (>100%) as compared to that of the garlic oil nanoemulsion (16.4%). However, higher bactericidal activity of the resulted nanoemulsion against Escherichia coli and Staphylococcus aureus, were related to the main sulfur bioactive components of the garlic oil in which their main functional groups were detected by Fourier transform-infrared spectroscopy.
Collapse
Affiliation(s)
| | - Afshin Javadi
- Department of Food Hygiene , Tabriz Branch, Islamic Azad University , Tabriz , Iran
| | - Navideh Anarjan
- Department of Chemical Engineering , Tabriz Branch, Islamic Azad University , Tabriz , Iran
| | | | - Hamid Mirzaei
- Department of Food Hygiene , Tabriz Branch, Islamic Azad University , Tabriz , Iran
| |
Collapse
|
11
|
Ahmadi O, Jafarizadeh-Malmiri H. Intensification and optimization of the process for thyme oil in water nanoemulsions preparation using subcritical water and xanthan gum. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Intensified process based on subcritical water conditions (120 °C and 1.5 atm, for 2 h) was utilized to prepare thyme oil in water (O/W) nanoemulsions. In this technique, water and xanthan gum, as green solvent and natural microbial emulsifier, were utilized. Results of gas chromatography revealed that Thymol and Carvacrol were two main bioactive compounds of the extracted thyme oil. Effects of amounts of xanthan gum (0.05–0.25 g) and thyme essential oil (0.2–0.8 mL) on size of oil nanodroplets and polydispersity index (PDI) of the resulted nanoemulsions were evaluated using response surface methodology. Results demonstrated that the produced thyme O/W nanoemulsion by 0.242 mL thyme oil and 0.140 g xanthan gum had smallest average nanodroplet size (150 nm) and PDI (0.088). Furthermore, monodispersed and spherical in shape thyme oil nanodroplets were provided in the nanoemulsion using these optimal conditions with zeta potential value of −10.1 mV and antioxidant activity of 17.4%. Results also indicated that this prepared nanoemulsion had high fungicidal and bactericidal activities toward Penicillium digitatum and Escherichia coli, respectively.
Collapse
Affiliation(s)
- Omid Ahmadi
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Islamic Republic of Iran
| | - Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Islamic Republic of Iran
| |
Collapse
|
12
|
Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, Zununi Vahed S, Maleki Dizaj S. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother Res 2020; 34:1926-1946. [PMID: 32166813 DOI: 10.1002/ptr.6658] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/26/2020] [Accepted: 02/16/2020] [Indexed: 01/03/2023]
Abstract
Curcumin has been used in numerous anti-microbial research because of its low side effects and extensive traditional applications. Despite having a wide range of effects, the intrinsic physicochemical characteristics such as low bioavailability, poor water solubility, photodegradation, chemical instability, short half-life and fast metabolism of curcumin derivatives limit their pharmaceutical importance. To overcome these drawbacks and improve the therapeutic ability of curcuminoids, novel approaches have been attempted recently. Nanoparticulate drug delivery systems can increase the efficiency of curcumin in several diseases, especially infectious diseases. These innovative strategies include polymeric nanoparticles, hydrogels, nanoemulsion, nanocomposite, nanofibers, liposome, nanostructured lipid carriers (NLCs), polymeric micelles, quantum dots, polymeric blend films and nanomaterial-based combination of curcumin with other anti-bacterial agents. Integration of curcumin in these delivery systems has displayed to improve their solubility, bioavailability, transmembrane permeability, prolong plasma half-life, long-term stability, target-specific delivery and upgraded the therapeutic effects. In this review paper, a range of in vitro and in vivo studies have been critically discussed to explore the therapeutic viability and pharmaceutical significance of the nano-formulated delivery systems to elevate the anti-bacterial activities of curcumin and its derivatives.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rovshan Khalilov
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan.,Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Baku, Azerbaijan
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Jafari A, Anarjan N, Jafarizadeh-Malmiri H. Effects of rotation speed and time, as solvent removal parameters, on the physico-chemical properties of prepared α-tocopherol nanoemulsions using solvent-displacement technique. Food Sci Biotechnol 2020; 29:371-378. [PMID: 32257520 PMCID: PMC7105522 DOI: 10.1007/s10068-019-00675-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
A bottom-up approach based on solvent-displacement technique was used to prepare α-tocopherol nanoemulsions. Effects of two main evaporation parameters namely, rotation speed (1 × 10-9 × 10 rpm) and rotation time (5-15 min) of utilized vacuum rotary evaporator, on the mean particle size, polydispersity index (PDI) and α-tocopherol degradation of the formed nanodroplets were evaluated using response surface methodology. Obtained results suggested three polynomial regression models for predicting the studied response variables' affected by selected evaporation parameters. Relatively high coefficients of determination for suggested models (> 0.7839) confirmed the suitability of the generated models. Multiple-optimization procedure revealed that the optimum amounts of evaporation speed and time were 30 rpm and 10 min, respectively, which in that, prepared spherical α-tocopherol nanoemulsions had mean particle size, PDI and concentration values of 48.9 nm, 0.232 and 358.7 mg/L, respectively.
Collapse
Affiliation(s)
- Azizeh Jafari
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, East Azarbaijan 51335-1996 Iran
| | - Navideh Anarjan
- Faculty of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, East Azarbaijan 515794-4533 Iran
| | - Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, East Azarbaijan 51335-1996 Iran
| |
Collapse
|
14
|
Faramarzi S, Anzabi Y, Jafarizadeh-Malmiri H. Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae-fabrication and characterization. Arch Microbiol 2020; 202:1203-1209. [PMID: 32077990 DOI: 10.1007/s00203-020-01831-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Selenium nanoparticles (Se NPs) were synthesized using Saccharomyces cerevisiae yeast. Influences of different amounts of sodium selenite (5.0, 10.0, 15.0, 20.0, and 25 µg) were evaluated on growth of yeast during incubation at 32 °C, during 4 days. UV-Vis spectroscopy results have shown that synthesized Se NPs had broad emission peak (λmax) in the wavelength around 350 nm which demonstrated that formation of Se NPs occurred in intracellular manner. Physico-chemical characteristics of the synthesized Se NPs using dynamic light scattering particle-size analyzer indicated that the fabricated Se NPs had particle size, polydispersity index, and zeta potential ranging from 75 to 709 nm, 0.189 to 0989, and -7.06 to -10.3 mV, respectively. Obtained results revealed that intracellular Se NPs with minimum particle size (75 nm), maximum zeta potential (-10.3 mV), and antioxidant activity (48.5%) were synthesized using minimum amount of selenium salt (5 µg). However, most uniform Se NPs were formed using maximum amount of selenium salt (25 µg). Results also indicated that by increasing amount of sodium selenite in the culture media, from 5.0 to 25 µg, antioxidant activity of the formed Se NPs decreased from 48.5 to 20.8, respectively.
Collapse
Affiliation(s)
- Sara Faramarzi
- Department of Microbiology, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Younes Anzabi
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, East Azarbaijan, Iran. .,Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | |
Collapse
|
15
|
Ahmadi O, Jafarizadeh-Malmiri H. Green approach in food nanotechnology based on subcritical water: effects of thyme oil and saponin on characteristics of the prepared oil in water nanoemulsions. Food Sci Biotechnol 2020; 29:783-792. [PMID: 32523788 DOI: 10.1007/s10068-019-00727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Thyme oil in water nanomulsion was prepared under subcritical water conditions using water and saponin, as solvent and emulsifier, respectively. Gas chromatography revealed that there were 44 bioactive components in the extracted thyme essential oil which, thymol and carvacrol were two mains of them. Experiments were designed based on central composite design and effects of amounts of saponin and thyme essential oil were evaluated on particle size, polydispersity index (PDI) and zeta potential of the prepared nanoemulsions using response surface methodology. Obtained results revealed that more desirable thyme oil nanoemulsions with minimum particle size (184.51 nm) and PDI (0.514), and maximum zeta potential (- 22.51 mV) were prepared using 0.94 g of saponin and 0.28 mL of thyme essential oil. Furthermore, results indicated that prepared nanoemulsion using obtained optimum production conditions had relatively high antioxidant activity (24%) and high antibacterial and antifungal activities against Staphylococcus aureus and Penicillium digitatum.
Collapse
Affiliation(s)
- Omid Ahmadi
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, East Azarbaijan 51335-1996 Iran
| | - Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, East Azarbaijan 51335-1996 Iran
| |
Collapse
|
16
|
Sayyar Z, Jafarizadeh-Malmiri H. Preparation of Curcumin Nanodispersions Using Subcritical Water – Screening of Different Emulsifiers. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zahra Sayyar
- Sahand University of TechnologyFaculty of Chemical Engineering Sahand New Town 5331811111 Tabriz Iran
| | - Hoda Jafarizadeh-Malmiri
- Sahand University of TechnologyFaculty of Chemical Engineering Sahand New Town 5331811111 Tabriz Iran
| |
Collapse
|
17
|
Farshbaf-Sadigh A, Jafarizadeh-Malmiri H, Anarjan N, Najian Y. Preparation of Ginger Oil in Water Nanoemulsion Using Phase Inversion Composition Technique: Effects of Stirring and Water Addition Rates on their Physico-Chemical Properties and Stability. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ginger oil in water (O/W) nanoemulsions, were produced using phase inversion composition method and Tween 80, as emulsifier. Effects of processing parameters namely, stirring rate (100 to1000 rpm) and water addition rate (1–10 mL/min) were evaluated on the physico-chemical, morphological, antioxidant and antimicrobial properties of the prepared O/W nanoemulsions using response surface methodology (RSM). Results indicated that well dispersed and spherical ginger nanodroplets were formed in the nanoemulsions with minimum particle size (8.80 nm) and polydispersity index (PDI, 0.285) and maximum zeta potential value (−9.15 mV), using stirring rate and water addition rate of 736 rpm and 8.18 mL/min, respectively. Insignificant differences between predicted and experimental values of the response variables, indicated suitability of fitted models using RSM. Mean particle size of the prepared nanoemulsion using optimum conditions were changed from 8.81 ± 1 to 9.80 ± 1 nm, during 4 weeks of storage, which revealed high stability of the resulted ginger O/W nanoemulsion. High antioxidant activity (55.4%), bactericidal (against Streptococcus mutans) and fungicidal (against Aspergillus niger) activities of the prepared nanoemulsion could be related to the presence of gingerols and shogaols, a group of phenolic alkanones, in the ginger oil, which those were detected by gas chromatography method.
Collapse
Affiliation(s)
- Ashraf Farshbaf-Sadigh
- Faculty of Chemical Engineering , Sahand University of Technology , 51335-1996 Sahand, East Azarbaijan, Tabriz , Iran
| | - Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering , Sahand University of Technology , 51335-1996 Sahand, East Azarbaijan, Tabriz , Iran , Tel.: +98 4133459099, Fax: +98413-3444355, e-mail:
| | - Navideh Anarjan
- Faculty of Chemical Engineering , Tabriz Branch, Islamic Azad University , East Azarbaijan, Tabriz , Iran
- Research and Development Department , Najian Herbal Group , East Azarbaijan, Tabriz , Iran
| | - Yahya Najian
- Research and Development Department , Najian Herbal Group , East Azarbaijan, Tabriz , Iran
| |
Collapse
|
18
|
Biological activities of chitosan and prepared chitosan-tripolyphosphate nanoparticles using ionic gelation method against various pathogenic bacteria and fungi strains. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00299-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|