1
|
Zhang YZ, Jiang DY, Zhang C, Yang K, Wang HF, Xia XW, Ding WJ. Pathological Impact on the Phyllosphere Microbiota of Artemisia argyi by Haze. J Microbiol Biotechnol 2021; 31:510-519. [PMID: 33746186 PMCID: PMC9723278 DOI: 10.4014/jmb.2009.09024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
The pathological impact of haze upon the phyllosphere microbiota awaits investigation. A moderate degree of haze environment and a clean control were selected in Chengdu, China. Artemisia argyi, a ubiquitously distributed and extensively applied Chinese herb, was also chosen for experiment. Total genome DNA was extracted from leaf samples, and for metagenome sequencing, an Illumina HiSeq 2500 platform was applied. The results showed that the gene numbers of phyllosphere microbiota derived from haze leaves were lower than those of the clean control. The phyllosphere microbiota derived from both haze and clean groups shared the same top ten phyla; the abundances of Proteobacteria, Actinomycetes and Anorthococcuso of the haze group were substantially increased, while Ascomycetes and Basidiomycetes decreased. At the genus level, the abundances of Nocardia, Paracoccus, Marmoricola and Knoelia from haze leaves were markedly increased, while the yeasts were statistically decreased. KEGG retrieval demonstrated that the functional genes were most annotated to metabolism. An interesting find of this work is that the phyllosphere microbiota responsible for the synthesis of primary and secondary metabolites in A. argyi were significantly increased under a haze environment. Relatively enriched genes annotated by eggNOG belong to replication, recombination and repair, and genes classified into the glycoside hydrolase and glycosyltransferase enzymes were significantly increased. In summary, we found that both structure and function of phyllosphere microbiota are globally impacted by haze, while primary and secondary metabolites responsible for haze tolerance were considerably increased. These results suggest an adaptive strategy of plants for tolerating and confronting haze damage.
Collapse
Affiliation(s)
- Yu-Zhu Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, P.R. China,College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| | - De-Yu Jiang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, P.R. China,Zigong Hospital of Traditional Chinese Medicine, 59 Ma Chongkou Street, Zigong 643010, P.R. China
| | - Chi Zhang
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, P.R. China
| | - Huai-Fu Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, P.R. China
| | - Xiu-Wen Xia
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, P.R. China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, P.R. China,Corresponding author Phone: +86-28-61800219 Fax: +86-28-61800225 E-mail:
| |
Collapse
|
2
|
Ganie SA, Reddy ASN. Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. BIOLOGY 2021; 10:309. [PMID: 33917813 PMCID: PMC8068108 DOI: 10.3390/biology10040309] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Nimeth BA, Riegler S, Kalyna M. Alternative Splicing and DNA Damage Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:91. [PMID: 32140165 PMCID: PMC7042379 DOI: 10.3389/fpls.2020.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/21/2020] [Indexed: 05/06/2023]
Abstract
Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants.
Collapse
|