1
|
Barber V, Mielke T, Cartwright J, Díaz-Rodríguez A, Unsworth WP, Grogan G. Unspecific Peroxygenase (UPO) can be Tuned for Oxygenation or Halogenation Activity by Controlling the Reaction pH. Chemistry 2024; 30:e202401706. [PMID: 38700372 DOI: 10.1002/chem.202401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Unspecific Peroxygenases (UPOs) are increasingly significant enzymes for selective oxygenations as they are stable, highly active and catalyze their reactions at the expense of only hydrogen peroxide as the oxidant. Their structural similarity to chloroperoxidase (CPO) means that UPOs can also catalyze halogenation reactions based upon the generation of hypohalous acids from halide and H2O2. Here we show that the halogenation and oxygenation modes of a UPO can be stimulated at different pH values. Using simple aromatic compounds such as thymol, we show that, at a pH of 3.0 and 6.0, either brominated or oxygenated products respectively are produced. Preparative 100 mg scale transformations of substrates were performed with 60-72 % isolated yields of brominated products obtained. A one-pot bromination-oxygenation cascade reaction on 4-ethylanisole, in which the pH was adjusted from 3.0 to 6.0 at the halfway stage, yielded sequentially brominated and oxygenated products 1-(3-bromo-4-methoxyphenyl)ethyl alcohol and 3-bromo-4-methoxy acetophenone with 82 % combined conversion. These results identify UPOs as an unusual example of a biocatalyst that is tunable for entirely different chemical reactions, dependent upon the reaction conditions.
Collapse
Affiliation(s)
- Verity Barber
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Tamara Mielke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jared Cartwright
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Alba Díaz-Rodríguez
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
2
|
Chen J, Dong S, Fang W, Jiang Y, Chen Z, Qin X, Wang C, Zhou H, Jin L, Feng Y, Wang B, Cong Z. Regiodivergent and Enantioselective Hydroxylation of C-H bonds by Synergistic Use of Protein Engineering and Exogenous Dual-Functional Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215088. [PMID: 36417593 DOI: 10.1002/anie.202215088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
It is a great challenge to optionally access diverse hydroxylation products from a given substrate bearing multiple reaction sites of sp3 and sp2 C-H bonds. Herein, we report the highly selective divergent hydroxylation of alkylbenzenes by an engineered P450 peroxygenase driven by a dual-functional small molecule (DFSM). Using combinations of various P450BM3 variants with DFSMs enabled access to more than half of all possible hydroxylated products from each substrate with excellent regioselectivity (up to >99 %), enantioselectivity (up to >99 % ee), and high total turnover numbers (up to 80963). Crystal structure analysis, molecular dynamic simulations, and theoretical calculations revealed that synergistic effects between exogenous DFSMs and the protein environment controlled regio- and enantioselectivity. This work has implications for exogenous-molecule-modulated enzymatic regiodivergent and enantioselective hydroxylation with potential applications in synthetic chemistry.
Collapse
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Zhifeng Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Longyi Jin
- Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| |
Collapse
|
3
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
4
|
Li K, Yang Q, Zhang P, Zhang W. Research Progress of Peroxygenase-Catalyzed Reactions Driven by in-situ Generation of H 2 O 2. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Grogan G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS AU 2021; 1:1312-1329. [PMID: 34604841 PMCID: PMC8479775 DOI: 10.1021/jacsau.1c00251] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/15/2023]
Abstract
The selective oxygenation of nonactivated carbon atoms is an ongoing synthetic challenge, and biocatalysts, particularly hemoprotein oxygenases, continue to be investigated for their potential, given both their sustainable chemistry credentials and also their superior selectivity. However, issues of stability, activity, and complex reaction requirements often render these biocatalytic oxygenations problematic with respect to scalable industrial processes. A continuing focus on Cytochromes P450 (P450s), which require a reduced nicotinamide cofactor and redox protein partners for electron transport, has now led to better catalysts and processes with a greater understanding of process requirements and limitations for both in vitro and whole-cell systems. However, the discovery and development of unspecific peroxygenases (UPOs) has also recently provided valuable complementary technology to P450-catalyzed reactions. UPOs need only hydrogen peroxide to effect oxygenations but are hampered by their sensitivity to peroxide and also by limited selectivity. In this Perspective, we survey recent developments in the engineering of proteins, cells, and processes for oxygenations by these two groups of hemoproteins and evaluate their potential and relative merits for scalable reactions.
Collapse
|
6
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
7
|
Püllmann P, Weissenborn MJ. Improving the Heterologous Production of Fungal Peroxygenases through an Episomal Pichia pastoris Promoter and Signal Peptide Shuffling System. ACS Synth Biol 2021; 10:1360-1372. [PMID: 34075757 DOI: 10.1021/acssynbio.0c00641] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal peroxygenases (UPOs) have emerged as oxyfunctionalization catalysts of tremendous interest in recent years. However, their widespread use in the field of biocatalysis is still hampered by their challenging heterologous production, substantially limiting the panel of accessible enzymes for investigation and enzyme engineering. Building upon previous work on UPO production in yeast, we have developed a combined promoter and signal peptide shuffling system for episomal high throughput UPO production in the industrially relevant, methylotrophic yeast Pichia pastoris. Eleven endogenous and orthologous promoters were shuffled with a diverse set of 17 signal peptides. Three previously described UPOs were selected as first test set, leading to the identification of beneficial promoter/signal peptide combinations for protein production. We applied the system then successfully to produce two novel UPOs: MfeUPO from Myceliophthora fergusii and MhiUPO from Myceliophthora hinnulea. To demonstrate the feasibility of the developed system to other enzyme classes, it was applied for the industrially relevant lipase CalB and the laccase Mrl2. In total, approximately 3200 transformants of eight diverse enzymes were screened and the best promoter/signal peptide combinations studied at various cofeeding, derepression, and induction conditions. High volumetric production titers were achieved by subsequent creation of stable integration lines and harnessing orthologous promoters from Hansenula polymorpha. In most cases promising yields were also achieved without the addition of methanol under derepressed conditions. To foster the use of the episomal high throughput promoter/signal peptide Pichia pastoris system, we made all plasmids available through Addgene.
Collapse
Affiliation(s)
- Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Tonin F, Tieves F, Willot S, van Troost A, van Oosten R, Breestraat S, van Pelt S, Alcalde M, Hollmann F. Pilot-Scale Production of Peroxygenase from Agrocybe aegerita. Org Process Res Dev 2021; 25:1414-1418. [PMID: 34168423 PMCID: PMC8218300 DOI: 10.1021/acs.oprd.1c00116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 12/17/2022]
Abstract
![]()
The pilot-scale production
of the peroxygenase from Agrocybe aegerita (rAaeUPO) is demonstrated.
In a fed-batch fermentation of the recombinant Pichia
pastoris, the enzyme was secreted into the culture
medium to a final concentration of 0.29 g L–1 corresponding
to 735 g of the peroxygenase in 2500 L of the fermentation broth after
6 days. Due to nonoptimized downstream processing, only 170 g of the
enzyme has been isolated. The preparative usefulness of the so-obtained
enzyme preparation has been demonstrated at a semipreparative scale
(100 mL) as an example of the stereoselective hydroxylation of ethyl
benzene. Using an adjusted H2O2 feed rate, linear
product formation was observed for 7 days, producing more than 5 g
L–1 (R)-1-phenyl ethanol. The biocatalyst
performed more than 340.000 catalytic turnovers (942 g of the product
per gram of rAaeUPO).
Collapse
Affiliation(s)
- Fabio Tonin
- Department of Biotechnology, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Sébastien Willot
- Department of Biotechnology, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Anouska van Troost
- Department of Biotechnology, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Remco van Oosten
- Department of Biotechnology, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Stefaan Breestraat
- Bioprocess Pilot Facility B.V., Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Sander van Pelt
- Bioprocess Pilot Facility B.V., Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, 2629HZ Delft, The Netherlands
| |
Collapse
|
9
|
Yoon J, Kim J, Tieves F, Zhang W, Alcalde M, Hollmann F, Park CB. Piezobiocatalysis: Ultrasound-Driven Enzymatic Oxyfunctionalization of C–H Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaeho Yoon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
10
|
Fungal Peroxygenases: A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-29541-7_14] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
van Schie MMCH, Zhang W, Tieves F, Choi DS, Park CB, Burek BO, Bloh JZ, Arends IWCE, Paul CE, Alcalde M, Hollmann F. Cascading g-C3N4 and Peroxygenases for Selective Oxyfunctionalization Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01341] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Morten M. C. H. van Schie
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Bastien O. Burek
- DECHEMA Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Jonathan Z. Bloh
- DECHEMA Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Isabel W. C. E. Arends
- University of Utrecht, Faculty of Science, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
| | - Caroline E. Paul
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
12
|
Burek BO, de Boer SR, Tieves F, Zhang W, van Schie M, Bormann S, Alcalde M, Holtmann D, Hollmann F, Bahnemann DW, Bloh JZ. Photoenzymatic Hydroxylation of Ethylbenzene Catalyzed by Unspecific Peroxygenase: Origin of Enzyme Inactivation and the Impact of Light Intensity and Temperature. ChemCatChem 2019. [DOI: 10.1002/cctc.201900610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bastien O. Burek
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
- Institut für Technische ChemieLeibniz Universität Hannover Callinstraße 3 30167 Hannover Germany
| | - Sabrina R. de Boer
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Florian Tieves
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Morten van Schie
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Sebastian Bormann
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis, CSIC 28049 Madrid Spain
| | - Dirk Holtmann
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Detlef W. Bahnemann
- Institut für Technische ChemieLeibniz Universität Hannover Callinstraße 3 30167 Hannover Germany
- Laboratory “Photoactive Nanocomposite Materials”Saint-Petersburg State University Ulyanovskaya str. 1, Peterhof Saint-Petersburg 198504 Russia
| | - Jonathan Z. Bloh
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| |
Collapse
|
13
|
Affiliation(s)
- Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4,Greifswald 17487, Germany, Phone: +49 3834 420 4367
| |
Collapse
|
14
|
Willot SJP, Fernández-Fueyo E, Tieves F, Pesic M, Alcalde M, Arends IW, Park CB, Hollmann F. Expanding the Spectrum of Light-Driven Peroxygenase Reactions. ACS Catal 2019; 9:890-894. [PMID: 30775065 PMCID: PMC6369655 DOI: 10.1021/acscatal.8b03752] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Indexed: 12/02/2022]
Abstract
![]()
Peroxygenases
require a controlled supply of H2O2 to operate
efficiently. Here, we propose a photocatalytic
system for the reductive activation of ambient O2 to produce
H2O2 which uses the energy provided by visible
light more efficiently based on the combination of wavelength-complementary
photosensitizers. This approach was coupled to an enzymatic system
to make formate available as a sacrificial electron donor. The scope
and current limitations of this approach are reported and discussed.
Collapse
Affiliation(s)
- Sébastien J.-P. Willot
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Elena Fernández-Fueyo
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Milja Pesic
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | | | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|