1
|
Payamifard M, Nemattalab M, Rezaie Shirmard L, Hesari Z. SLN and chitosan nano-delivery systems for antibacterial effect of black seed ( Nigella sativa) oil against S. aureus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:991-1002. [PMID: 39033513 DOI: 10.1080/09603123.2024.2378103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Staphylococcus aureus with current universal importance represents a main carrier of emerging antimicrobial resistance determinatives of global health concerns that have developed drug resistance mechanisms to the various available antibiotics. On the other hand, due to the antimicrobial potential of Nigella Sativa oil (NSO), it was hypothesized that incorporation of nano-carriers (NS-SLN and NS-chitosan (CH) nanoparticles) can enhance its antibacterial effects. This study evaluated the physico-chemical and antibacterial characteristics of NS-SLN and NS-CH. TEM images revealed a round shape with clear edges for both nanoparticles, and the average sizes were reported to be 196.4 and 446.6 nm for NS-SLN and NS-CH, respectively. The zeta potential and encapsulation efficiency were -28.9 and 59.4 mV and 73.22% and 88% for NS-SLN and NS-CH, respectively. The Minimum Inhibitory Concentrations for NSO, NS-SLN, and NS-CH against S. aureus were 480, 200, and 80 µg/mL, respectively. The results confirm significantly stronger antibacterial influences of NSO when loaded into chitosan nanoparticles as a potential candidate for nano-delivery of antimicrobial agents.
Collapse
Affiliation(s)
| | - Mehran Nemattalab
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Hesari
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Almasri RS, Bedir AS, Al Raish SM. Comprehensive Ethnopharmacological Analysis of Medicinal Plants in the UAE: Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Nutrients 2025; 17:411. [PMID: 39940269 PMCID: PMC11820108 DOI: 10.3390/nu17030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
The United Arab Emirates (UAE) is home to diverse indigenous medicinal plants traditionally used for centuries. This study systematically evaluates the pharmacological and nutritional potential of key medicinal plants, including Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Comprehensive literature searches were conducted using PubMed, Scopus, and Web of Science to identify studies relevant to their nutritional and pharmacological uses. The findings highlight the therapeutic roles of these plants in managing global health challenges such as gastrointestinal diseases, and antimicrobial resistance through bioactive compounds like flavonoids, polyphenols, and antioxidants. Additionally, their contributions to nutrition, including essential vitamins and minerals, are emphasized for disease prevention and health promotion. While this research focuses on the UAE, the implications are globally relevant, as many of these plants are also found in traditional medicine across Asia, Africa, and Europe. Integrating these findings into global nutritional and healthcare systems offers potential solutions for pressing public health concerns, reduces reliance on synthetic pharmaceuticals, and promotes sustainable healthcare practices. This work is a valuable reference for researchers, healthcare professionals, and policymakers, bridging traditional knowledge and modern scientific applications globally.
Collapse
Affiliation(s)
- Razan S. Almasri
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Nikvarz N, Sedighi B, Ansari M, Shahdizade S, Shojaei R, Sharififar F. Medicinal plants used in multiple sclerosis patients, prevalence and associated factors: a descriptive cross-sectional study. BMC Complement Med Ther 2024; 24:278. [PMID: 39039480 PMCID: PMC11265095 DOI: 10.1186/s12906-024-04587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic and debilitating disease that not only leads to disability and associated condition but also impacts one's ability to maintain a professional life. People's acceptance and utilization of medicinal plants (MPs) play an important role in managing their treatment process. As a result, this study aims to investigate the use of medicinal herbs among patients with MS. METHODS A descriptive cross-sectional study was conducted on 150 MS patients who visited a private clinic and the MS Association in Kerman, Iran in 2021. A questionnaire comprising questions about sociodemographic information, disease variables, and aspects of MPs usage was utilized for data collection. Statistical analysis was performed using SPSS version 20 (SPSS Inc., Chicago, IL). The Chi-square test was employed to identify any association between demographic characteristics and MPs usage. To determine the prevalence of plant use in a specific area and the consensus among informants, the use value (UV) and Informant consensus factor (Fic) were calculated. RESULTS The study revealed a high prevalence of MPs usage among MS patients. Chamomile (66.6%) and golegavzaban (62.0%) were the most commonly used plants with the highest UV indices (0.88 and 0.82 respectively), while St. John's wort and licorice were rarely used (0.67% and 4% respectively). Participants cited pursuing a healthier lifestyle as the primary reason for using MPs (24%). St. John's wort, lavender, and chamomile were the most satisfying plants (100%, 100%, and 53.0% respectively). Chamomile had the highest Fic too. Most patients were motivated to get MPs from their relatives. CONCLUSIONS Given the widespread use of MPs among MS patients, neurologists should enhance their knowledge in this area to guide patients away from seeking advice from non-professionals. Providing standardized formulations can help prevent potential interactions between MPs and mainstream drugs, thereby improving patients safety and outcomes.
Collapse
Affiliation(s)
- Naemeh Nikvarz
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnaz Sedighi
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Pharmaceutical Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shirin Shahdizade
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhane Shojaei
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Aamir M, Abid A, Azam I, Ikram A, Saeed F, Afzaal M, Ateeq H, Akram N, Hussain S, Khan MR. Characterization of carbonated beverage fortified with chamomile herbal extract. Food Sci Nutr 2024; 12:4353-4361. [PMID: 38873483 PMCID: PMC11167168 DOI: 10.1002/fsn3.4101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 06/15/2024] Open
Abstract
The current study was planned to provide nutrient dense carbonated beverage fortified with chamomile herbal extract that was rich in healthy nutrients and best to use. Infusion method was used to prepare chamomile herbal extract. After adding flavor and sugar syrup, carbonation was done. Different treatments were prepared (T0, T1, T2, T3, T4, and T5). The antioxidant potential, physiochemical properties, and sensory attributes of beverage were assessed. Results showed that addition of chamomile enhanced the antioxidant and physiochemical properties of beverage. The DPPH activity, total phenolic content, and total flavonoid content were observed as 49.23 ± 0.03 (%), 136.92 ± 0.06 (mg GAE/L), and 1989.47 ± 0.07 (mg QE/L), respectively, among T5 with 12% of chamomile extract. Moreover, the acidity increases from T0 to T5 (0.191 ± 0.01 to 0.220 ± 0.01). Furthermore, the overall acceptability of T4 was highest among sensory attributes.
Collapse
Affiliation(s)
- Muhammad Aamir
- National Institute of Food Science and Technology (NIFSAT)University of AgricultureFaisalabadPakistan
| | - Ahtesham Abid
- National Institute of Food Science and Technology (NIFSAT)University of AgricultureFaisalabadPakistan
| | - Iqra Azam
- Department of Food Science and TechnologyGovernment College Women University FaisalabadFaisalabadPakistan
| | - Ali Ikram
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and AgricultureKing Saud UniversityRiyadhSaudi Arabia
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
5
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
6
|
Phytochemical Characterization of Chamomile ( Matricaria recutita L.) Roots and Evaluation of Their Antioxidant and Antibacterial Potential. Molecules 2022; 27:molecules27238508. [PMID: 36500602 PMCID: PMC9736673 DOI: 10.3390/molecules27238508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Matricaria recutita L., German chamomile, is one of the most widely used medicinal plants, whose efficacy has been proven in numerous studies. However, its roots have attracted only little interest so far, since mainly above-ground plant parts are used for medicinal purposes. To broaden the knowledge of chamomile roots, a profound phytochemical characterization was performed along with a bioactivity screening of corresponding root extracts. While volatile constituents such as chamomillol and polyynes were detected using GC-MS, HPLC-MSn analyses revealed the occurrence of four coumarin glycosides, more than ten phenolic acid esters and five glyceroglycolipids. Furthermore, the antioxidant activity of the extracts was evaluated. Polar extracts revealed IC50 values ranging from 13 to 57 µg/mL in the DPPH radical scavenging assay, which is in the same range as reported for chamomile flower extracts. In addition, superoxide radical scavenging potential and mild antibacterial effects against S. aureus und B. subtilis were demonstrated. Moreover, to assess interspecies variation in chamomile roots, extracts of M. recutita were compared to those of M. discoidea DC. Interestingly, the latter revealed stronger antioxidant activity. The presented results aim at the valorization of chamomile roots, previously discarded as by-product of chamomile flower production, as a sustainable source of bioactive phytochemicals.
Collapse
|
7
|
Ismail Y, Fahmy DM, Ghattas MH, Ahmed MM, Zehry W, Saleh SM, Abo-elmatty DM. Integrating experimental model, LC-MS/MS chemical analysis, and systems biology approach to investigate the possible antidiabetic effect and mechanisms of Matricaria aurea (Golden Chamomile) in type 2 diabetes mellitus. Front Pharmacol 2022; 13:924478. [PMID: 36160451 PMCID: PMC9490514 DOI: 10.3389/fphar.2022.924478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heterogeneous disease with numerous abnormal targets and pathways involved in insulin resistance, low-grade inflammation, oxidative stress, beta cell dysfunction, and epigenetic factors. Botanical drugs provide a large chemical space that can modify various targets simultaneously. Matricaria aurea (MA, golden chamomile) is a widely used herb in Middle Eastern communities for many ailments, including diabetes mellitus, without any scientific basis to support this tradition. For the first time, this study aimed to investigate the possible antidiabetic activity of MA in a type 2 diabetic rat model, identify chemical constituents by LC-MS/MS, and then elucidate the molecular mechanism(s) using enzyme activity assays, q-RTPCR gene expression analysis, network pharmacology analysis, and molecular docking simulation. Our results demonstrated that only the polar hydroethanolic extract of MA had remarkable antidiabetic activity. Furthermore, it improved dyslipidemia, insulin resistance status, ALT, and AST levels. LC-MS/MS analysis of MA hydroethanolic extract identified 62 compounds, including the popular chamomile flavonoids apigenin and luteolin, other flavonoids and their glycosides, coumarin derivatives, and phenolic acids. Based on pharmacokinetic screening and literature, 46 compounds were chosen for subsequent network analysis, which linked to 364 candidate T2DM targets from various databases and literature. The network analysis identified 123 hub proteins, including insulin signaling and metabolic proteins: IRS1, IRS2, PIK3R1, AKT1, AKT2, MAPK1, MAPK3, and PCK1, inflammatory proteins: TNF and IL1B, antioxidant enzymes: CAT and SOD, and others. Subsequent filtering identified 40 crucial core targets (major hubs) of MA in T2DM treatment. Functional enrichment analyses of the candidate targets revealed that MA targets were mainly involved in the inflammatory module, energy-sensing/endocrine/metabolic module, and oxidative stress module. q-RTPCR gene expression analysis showed that MA hydroethanolic extract was able to significantly upregulate PIK3R1 and downregulate IL1B, PCK1, and MIR29A. Moreover, the activity of the antioxidant hub enzymes was substantially increased. Molecular docking scores were also consistent with the networks’ predictions. Based on experimental and computational analysis, this study revealed for the first time that MA exerted antidiabetic action via simultaneous modulation of multiple targets and pathways, including inflammatory pathways, energy-sensing/endocrine/metabolic pathways, and oxidative stress pathways.
Collapse
Affiliation(s)
- Yassin Ismail
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
- *Correspondence: Yassin Ismail,
| | - Dina M. Fahmy
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Maivel H. Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mai M. Ahmed
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Walaa Zehry
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|