1
|
Sukhanov AA, Milanovsky GE, Vitukhnovskaya LA, Mamedov MD, Salikhov KM, Semenov AY. Kinetics of Electron Transfer between Redox Cofactors in Photosystem I Measured by High-Frequency EPR Spectroscopy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1851-1862. [PMID: 39523121 DOI: 10.1134/s0006297924100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
The kinetics of the primary electron donor P700+ and the quinone acceptor A1- redox transitions were simultaneously studied for the first time in the time range of 200 μs-10 ms using high-frequency pulse Q-band EPR spectroscopy at cryogenic temperatures in various complexes of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803. In the A1-core PSI complexes that lack 4Fe4S clusters, the kinetics of the A1- and P700+ signals disappearance at 100 K were similar and had a characteristic time of τ ≈ 500 μs, caused by charge recombination in the P700+A1A- ion-radical pair in the A branch of redox cofactors. The kinetics of the backward electron transfer from A1B- to P700+ in the B branch of redox cofactors with τ < 100 μs could not be resolved due to time limitations of the method. In the native PSI complexes with a full set of redox cofactors and in the FX-core complexes, containing the 4Fe4S cluster FX, the kinetics of the A1- signal was significantly faster than that of the P700+ signal. The disappearance of the A1- signal had a characteristic time of 280-350 μs; it was suggested that, in addition to the backward electron transfer from A1A- to P700+ with τ ≈ 500 μs, its kinetics also includes the forward electron transfer from A1A- to the 4Fe4S cluster FX, which had slowed down to 150-200 μs. In the kinetics of P700+ reduction, it was possible to distinguish components caused by the backward electron transfer from A1- (τ ≈ 500 μs) and from 4Fe4S clusters (τ = 1 ms for the FX-core and τ > 5 ms for native complexes). These results are in qualitative agreement with the data on the kinetics of P700+ reduction obtained previously using pulse absorption spectrometry at cryogenic temperatures.
Collapse
Affiliation(s)
- Andrey A Sukhanov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Zavoisky Physical-Technical Institute, Kazan, 420111, Russia
| | - Georgy E Milanovsky
- A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Liya A Vitukhnovskaya
- A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Kev M Salikhov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Zavoisky Physical-Technical Institute, Kazan, 420111, Russia
| | - Alexey Yu Semenov
- A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
2
|
Sukhanov AA, Mamedov MD, Milanovsky GE, Salikhov KM, Semenov AY. Changes in the Electron Transfer Symmetry in the Photosystem I Reaction Centers upon Removal of Iron-Sulfur Clusters. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1109-1118. [PMID: 36273879 DOI: 10.1134/s0006297922100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
In photosynthetic reaction centers of intact photosystem I (PSI) complexes from cyanobacteria, electron transfer at room temperature occurs along two symmetrical branches of redox cofactors A and B at a ratio of ~3 : 1 in favor of branch A. Previously, this has been indirectly demonstrated using pulsed absorption spectroscopy and more directly by measuring the decay modulation frequencies of electron spin echo signals (electron spin echo envelope modulation, ESEEM), which allows to determine the distance between the separated charges of the primary electron donor P700+ and phylloquinone acceptors A1A- and A1B- in the symmetric redox cofactors branches A and B. In the present work, these distances were determined using ESEEM in PSI complexes lacking three 4Fe-4S clusters, FX, FA, and FB, and the PsaC protein subunit (the so-called P700-A1 core), in which phylloquinone molecules A1A and A1B serve as the terminal electron acceptors. It was shown that in the P700-A1 core preparations, the average distance between the centers of the P700+A1- ion-radical pair at a temperature of 150 K in an aqueous glycerol solution and in a dried trehalose matrix, as well as in a trehalose matrix at 280 K, is ~25.5 Å, which corresponds to the symmetrical electron transfer along the A and B branches of redox cofactors at a ratio of 1 : 1. Possible reasons for the change in the electron transfer symmetry in PSI upon removal of the PsaC subunit and 4Fe-4S clusters FX, FA, and FB are discussed.
Collapse
Affiliation(s)
- Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420029, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Georgy E Milanovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Kev M Salikhov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420029, Russia
| | - Alexey Yu Semenov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
3
|
Möbius K, Lubitz W, Savitsky A. CIDEP-Enhanced ENDOR of short-lived radicals. Recollections of first joint experiments with Renad Sagdeev. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Multiple pathways of charge recombination revealed by the temperature dependence of electron transfer kinetics in cyanobacterial photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:601-610. [DOI: 10.1016/j.bbabio.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022]
|
6
|
Kurashov V, Gorka M, Milanovsky GE, Johnson TW, Cherepanov DA, Semenov AY, Golbeck JH. Critical evaluation of electron transfer kinetics in P700–FA/FB, P700–FX, and P700–A1 Photosystem I core complexes in liquid and in trehalose glass. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1288-1301. [DOI: 10.1016/j.bbabio.2018.09.367] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
7
|
Buntkowsky G, Ivanov K, Vieth HM. From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science. Z PHYS CHEM 2017. [DOI: 10.1515/zpch-2016-5006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gerd Buntkowsky
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 4, Darmstadt 64287, Germany
| | - Konstantin Ivanov
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|