1
|
Hong C, Wang W, Wu L, Zhou J, Long S, Zhou W, Guo Y. Synthesis of MoS 2@MoO 3/(Cu +/g-C 3N 4) ternary composites with double S-scheme heterojunction for peroxymonosulfate activation exposing to visible light. J Colloid Interface Sci 2025; 678:639-656. [PMID: 39265336 DOI: 10.1016/j.jcis.2024.09.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The construction of semiconductor heterojunction is an effective way for charge separation in photocatalytic degradation of pollutants. In this study, a novel MoS2@MoO3/(Cu+/g-C3N4) ternary composites (MMCCN) was prepared via a simple calcination method. The as-prepared composites exhibited exceptional performance in activating peroxymonosulfate (PMS) for the degradation of rhodamine B (RhB). The activity testing results indicated that 99.41 % of RhB (10 mg·L-1, 10 mL) was effectively removed by the synergistic effect of composites photocatalyst (0.1 g·L-1) and PMS (0.1 g·L-1) under visible light irradiation for 40 min. Its reaction rate constant exceeded that of Cu+/g-C3N4, MoO3 and MoS2 by a factor of 3.56, 17.30 and 11.73 times, respectively. The crystal structure, band gap and density of states (DOS) of the semiconductors were calculated according to the density functional theory (DFT). Free radical trapping tests and electron spin resonance spectroscopy validated that 1O2, O2- and h+ are primary reactive species participating in the decomposition of RhB. The ternary composites demonstrated good stability and maintained excellent degradation efficiency even across four reaction cycles. Furthermore, the activation mechanism and the intermediates produced during the decomposition course of RhB by MMCCN/PMS/vis system were analyzed and elucidated. A double S-scheme heterojunctions was responsible for efficient separation of photo-induced electron-hole pairs. This work presents a novel method in the construction of double S-scheme heterojunctions for PMS activation which is expected to find wide applications in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Chuangbin Hong
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center 100#, Guangzhou 510006, PR China
| | - Wenguang Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center 100#, Guangzhou 510006, PR China.
| | - Liangpeng Wu
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, PR China.
| | - Jiehang Zhou
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center 100#, Guangzhou 510006, PR China
| | - Shimin Long
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center 100#, Guangzhou 510006, PR China
| | - Wentao Zhou
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center 100#, Guangzhou 510006, PR China
| | - Yuxi Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou Higher Education Mega Center 100#, Guangzhou 510006, PR China
| |
Collapse
|
2
|
de Arruda Leite B, Meireles G, Abe FR, Gravato C, Dorta DJ, de Oliveira DP. Do zebrafish become blind or is it too much red dye in water? Distinguishing the embryo-larval development and physiology effects of DR 60, 73, and 78. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168062. [PMID: 37884151 DOI: 10.1016/j.scitotenv.2023.168062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Some dyes currently used by the textile, pharmaceutical, food, cosmetic, and photographic industries have been shown to be toxic and/or mutagenic to aquatic life. Most of these dyes resist degradation processes available for treating wastewater, and these processes might generate even more toxic by-products. Despite the large number of available dyes and the large quantity of dyes released into the environment, studies on their toxicity are still scarce. We evaluated and compared the effects in the animal model Danio rerio (zebrafish) of environmentally relevant concentrations of Disperse Red 60 (DR 60), 73 (DR 73), and 78 (DR 78) using the fish embryo acute toxicity (FET) test, morphometric analysis, immunofluorescence imaging, and behavioral parameters. DR 60 caused ocular modifications, while the DR 73 caused non-inflation of the swim bladder (NISB), pericardial edema (PE), scoliosis (S) and abnormal yolk sac (AYS) from at 0.125 mg/L. In behavioral tests, all the dyes induced changes in velocity and time spent swimming of exposed larvae. However, these alterations in behavior seem to be caused by different factors dependent on the dye and its concentration. Nevertheless, behavior seems to add valuable information concerning the hazards analysis of dyes, since it reveals to be the most sensitive group of parameters tested in the current study. In conclusion, of the behavioral and developmental alterations caused by these dyes should be interpreted as an alert for greater attention when registering new dyes and releasing them into the environment. In the particular case of DR 60 the possibility that directly affects the eye of larvae is of great environmental concern, but also from the human health perspective.
Collapse
Affiliation(s)
- Bianca de Arruda Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Gabriela Meireles
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil; Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Flávia Renata Abe
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniel Junqueira Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo CEP 14040901, Brazil
| | - Danielle P de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
3
|
Singh A, Yadav BC. Green synthesized ZnO/NiO heterostructures based quick responsive LPG sensor for the detection of below LEL with DFT calculations. RESULTS IN SURFACES AND INTERFACES 2023. [DOI: 10.1016/j.rsurfi.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Zhang X, Zhang H, Chen P, Liu M, Wu P, Liu C, Jiang W. One-step dye wastewater treatment by combined adsorption, extraction, and photocatalysis using g-C3N4 pickering emulsion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Qi S, Zhang K, Zhang Y, Zhang R, Xu H. TiO2/Zn0.5Cd0.5S heterojunction for efficient photocatalytic degradation of methylene blue and its photocatalytic mechanism. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Nawaz I, Shehzad H, Ahmed E, Sharif A, Farooqi ZH, Din MI, Begum R, Irfan A, Liu Z, Zhou L, Ouyang J. Facile synthesis and adsorption characteristics of a hybrid composite based on ethyl acetoacetate modified chitosan/calcium alginate/TiO 2 for efficient recovery of Ni(II) from aqueous solution. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, chemical modification of chitosan has been carried out using epichlorohydrin as crosslinking agent and ethyl acetoacetate as a modifier to graft acetoacetyl moiety. The said organo-functionalization on chitosan and sodium alginate not only offered a novel support for TiO2 immobilization but also enhanced sorption performance for Ni(II) recovery from aqueous medium. So, a composite consisting of acetoacetyl moiety grafted chitosan, sodium alginate and titanium oxide (EAA-MCS/TiO2) was prepared and characterized by fourier transform-infra red (FT-IR) spectroscopy and scanning electron microscopy (SEM). The hybrid composite (3EAA-MCS/TiO2) which had TiO2 to EAA-MCS mass ratio of 20.0% by weight showed maximum sorption efficiency. The formulated sorbent was conditioned in the form of hydrogel beads for operation. Isothermal sorption and kinetics studies were performed at pH = 6.0 to configure the nature of sorption. Pseudo-2nd order rate expression better explained the sorption kinetics and chemisorption is the predominant mode of uptake. Langmuir adsorption model better explained the sorption process (R
2 ∼ 0.99) and maximum monolayer sorption capacity (q
m
) at sorption/desorption dynamic equilibrium was computed as 403 mg/g at optimized pH.
Collapse
Affiliation(s)
- Imran Nawaz
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Hamza Shehzad
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ejaz Ahmed
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ahsan Sharif
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Zahoor H. Farooqi
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Muhammad Imran Din
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Robina Begum
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science , King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
- Research Center for Advanced Materials Science, King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
| | - Zhirong Liu
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang , P. R. China
| | - Limin Zhou
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang , P. R. China
| | - Jinbo Ouyang
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang , P. R. China
| |
Collapse
|
7
|
Saeed M, Muneer M, Haq AU, Akram N. Photocatalysis: an effective tool for photodegradation of dyes-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:293-311. [PMID: 34523090 DOI: 10.1007/s11356-021-16389-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The disposal of dye-contaminated wastewater is a major concern around the world for which a variety of techniques are used for its treatment. The photocatalytic treatment of dye-contaminated wastewater is one of the treatment methods. Semiconductor-assisted photocatalytic treatment of dye-contaminated wastewater has gained pronounced attention recently. This review outlines the recent advancements in the photocatalytic treatment of dye-contaminated wastewater. The photocatalytic degradation of dyes follows three types of mechanisms: (1) dye sensitization through charge injection, (2) indirect dye degradation through oxidation/reduction, and (3) direct photolysis of dye. Several experimental parameters like initial concentration of dyes, pH, and catalyst dosage significantly affect the photocatalytic degradation of dyes. The photocatalytic materials can be categorized into three generations. The single-component (e.g., ZnO, TiO2) and multiple component semiconductor metal oxides (e.g., ZnO-TiO2, Bi2O3-ZnO) are categorized as first-generation and second-generation photocatalysts, respectively. The photocatalysts dispersed on an inert solid substrate (e.g., Ag-Al2O3, ZnO-C) are classified as third-generation photocatalysts. Finally, we reviewed the challenges that affect the photocatalytic degradation of dyes.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Chemistry, Government College University, Faisalabad, Pakistan.
| | - Majid Muneer
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Atta Ul Haq
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
8
|
ElSayed N, El-Rabiei MM, Negem M. Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Electroplated protective thin film is highly promising materials for advanced applications such as high corrosion resistance and energy conversion and storage. This work is to investigate the effect of Co content and TiO2 on the corrosion resistance of Ni–xCo–yTiO2 nanocomposites in alkaline media. The nanocrystalline Ni–xCo–yTiO2 composites were electroplated using the sulfate-gluconate bath containing the suspended TiO2 nanograins under ultrasound waves and mechanical stirring. The microstructure and corrosion behavior of the electroplated Ni–xCo–yTiO2 nanocomposites have been investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The XRD pattern of the electroplated Ni–Co matrices with 1–75% of cobalt arranged in face-centered cubic (FCC) system, while the electroplated Ni–Co matrices of further Co% more than 76% converted to hexagonal closed-package (HCP) crystal system. The surface of the Ni–xCo–yTiO2 nanocomposites after immersion in 1.0 M KOH electrolytes was investigated via SEM, atomic force microscopy and EDX. The results displayed that the rate of corrosion of the different composites decreased by combining Ni, Co and the inclusion of TiO2. The improved corrosion resistance of Ni–47Co–3.77TiO2 composites is due to the formation of Ni/Co oxy/hydroxide layer and rebelling effect of OH− by TiO2 sites, which reduces the attacking effect of OH−, O2, and H2O, and notably retards the overall corrosion processes.
Collapse
Affiliation(s)
- Nady ElSayed
- Chemistry Department , Faculty of Science, Fayoum University , Faiyum , Egypt
| | | | - Mosaad Negem
- Chemistry Department , Faculty of Science, Fayoum University , Faiyum , Egypt
| |
Collapse
|
9
|
Akram F, Saeed M, Akhtar J, Raza Naqvi SA, Haq AU. Fabrication and characterization of Fe2O3, Bi2O3 and BiFeO3 and evaluation of their photo catalytic performances on degradation of methylene blue dye. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study reports the fabrication of Fe2O3, Bi2O3, and BiFeO3, characterization and evaluation of the photocatalytic performances for methylene blue dye degradation. The materials were synthesized by precipitation method and characterized by scanning electron microscopy, X-ray diffraction, energy dispersive X-rays analyses, and Fourier transform infrared analyses. The photocatalytic activities of Fe2O3, Bi2O3, and BiFeO3 were compared by performing degradation experiments with 50 mL of 100 mg/L methylene blue solution. The as-prepared BiFeO3 was found as 2.4 times and 1.7 times more effective than Fe2O3 and Bi2O3, with a 79, 47, and 57% catalytic activity, respectively. The degradation of methylene blue over the BiFeO3 catalyst was optimized in terms of pH, catalyst dosage, temperature, and methylene blue concentration. The Eley–Rideal mechanism was proposed to describe the reaction kinetics in terms of the first order and second order kinetics model. Activation energy E (kJ/mol), enthalpy ΔH (kJ/mol), entropy ΔS (J/mol) and free energy ΔG (kJ/mol) were calculated as 20.8, 18.2, 197.5 and −45.3 respectively. The negative value of free energy shows that photodegradation is favored in present conditions.
Collapse
Affiliation(s)
- Fiza Akram
- Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Muhammad Saeed
- Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Javaid Akhtar
- Department of Chemical & Material Engineering , College of Engineering, King Abdul Aziz University , Jeddah , Kingdom of Saudi Arabia
| | - Syed Ali Raza Naqvi
- Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Atta ul Haq
- Department of Chemistry , Government College University , Faisalabad , Pakistan
| |
Collapse
|
10
|
Zhou S, Fu Z, Xia L, Mao Y, Zhao W, Wang A, Zhang C, Ding C, Xu W. In situ synthesis of ternary hybrid nanocomposites on natural Juncus effusus fiber for adsorption and photodegradation of organic dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Bankole OM, Olaseni SE, Adeyemo MA, Ogunlaja AS. Microwave-Assisted Synthesis of Cobalt Oxide/Reduced Graphene Oxide (Co 3O 4–rGo) Composite and its Sulfite Enhanced Photocatalytic Degradation of Organic Dyes. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
One-pot synthesis of Co3O4 nanocrystals on reduced graphene oxide (rGO) was carried out by reacting cobalt nitrate, L-arginine, extract of Laportae aestuans as oxidant, fuel and reducing agent, respectively, in a domestic microwave. Morphologies of Co3O4–rGo (RGCO) composite was elucidated using UV-Vis, FT-IR, TEM, SEM, EDX, XRD and photoluminescence spectroscopies. The synthesized RGCO composite was applied as heterogeneous photocatalyst in the activation of Na2SO3 (sulfite) as sacrificial agent to degrade cationic dyes: rhodamine B (RhB) and methylene blue (MB), under visible light, at neutral pH 7.0. Photocatalytic performance of as-prepared RGCO was significantly enhanced in the presence of Na2SO3. Enhanced photocatalytic activity of RGCO was attributed to the synergistic effects between sulfite radicals generated in situ, and reduced graphene oxide, in which rGO served as electron sink to suppress recombination of photogenerated charge carriers. Plausible mechanistic pathways responsible for the activation of sulfite anions in situ are presented in this paper.
Collapse
Affiliation(s)
- Owolabi M. Bankole
- Hydrochemistry Research Laboratory , Adekunle Ajasin University , Akungba , Nigeria , Phone: +2348034018955
| | - Segun E. Olaseni
- Hydrochemistry Research Laboratory , Adekunle Ajasin University , Akungba , Nigeria
| | - Moses A. Adeyemo
- Hydrochemistry Research Laboratory , Adekunle Ajasin University , Akungba , Nigeria
| | - Adeniyi S. Ogunlaja
- Department of Chemistry , Nelson Mandela University , Port Elizabeth , South Africa
| |
Collapse
|
12
|
Khan HU, Jan MT, Iqbal M, Shah M, Ullah I, Khan J, Mahmood K, Niaz A, Tariq M. Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
In the present study, we have synthesized conducting polymer nanocomposites consist of silver nanoparticles (AgNPs), graphene, and polyvinyl acetate (PVAc) emulsion. The synthesized nanocomposite was characterized by UV/Vis, FT-IR, XRD, TGA, and SEM techniques. SEM images showed that AgNPs and graphene sheets are well dispersed in the PVAc matrix. The electrical conductivities of the nanocomposites were examined using the impedance analyzer instrument. It was ascertained that polymer composite containing silver nanoparticles and graphene exhibit higher conductivities. The PVAc-AgNPs/Graphene nanocomposite was also used as potential conducting materials for humidity measurement.
Collapse
Affiliation(s)
- Hizb Ullah Khan
- Department of Chemistry , Islamia College Peshawar, A Public-Sector University , Peshawar-25120 , Pakistan
- National Centre of Excellence in Physical Chemistry, University of Peshawar , Peshawar-25120 , Pakistan
| | - Muhammad Tariq Jan
- Department of Chemistry , Islamia College Peshawar, A Public-Sector University , Peshawar-25120 , Pakistan
| | - Mahmood Iqbal
- PCSIR laboratories Complex , Peshawar-25120 , Pakistan
| | - Mutabar Shah
- Department of Physics , University of Peshawar , Peshawar-25120 , Pakistan
| | - Inam Ullah
- National Centre of Excellence in Physical Chemistry, University of Peshawar , Peshawar-25120 , Pakistan
| | - Jehangeer Khan
- National Centre of Excellence in Physical Chemistry, University of Peshawar , Peshawar-25120 , Pakistan
| | | | - Abdul Niaz
- Department of Chemistry , Hazara University , Manshera-21120 , Pakistan
| | - Muhammad Tariq
- National Centre of Excellence in Physical Chemistry, University of Peshawar , Peshawar-25120 , Pakistan
| |
Collapse
|
13
|
Rahman G, Khan M, Khan Z, Shah AUHA, Khan MS, Shah LA. Nickel Oxide-incorporated Polyaniline/Polyvinyl Alcohol Composite for Enhanced Antibacterial Activity. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2018-1303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The development of biocompatible, cost effective and more efficient materials to control or inhibit the growth of microorganisms in necessary to fight against resistant microbes. Here, we demonstrate the synthesis of nickel oxide-incorporated polyaniline/polyvinyl alcohol (PANI/PVA/NiOx) composite material by single-step polymerization and its application as antibacterial agent. The composite films were characterized using UV-visible spectroscopy (UV-Vis), Thermogravimetric analysis (TGA), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). UV-Vis spectra revealed the enhancement in absorption properties of PANI/PVA/NiOx with optimum 5% incorporation of NiOx. TGA results indicated slightly enhanced thermal stability of the PANI/PVA/NiOx composite film as compared to PANI/PVA. FTIR spectra for composites revealed the existence of NiOx in polymers. However the crystallinity of PANI/PVA was not much affected. The antibacterial activity of the prepared composites was examined against four different gram negative bacteria, Salmonella, Shigella, Pseudomonas and Escherichia coli (E. coli). The composite exhibited excellent antibacterial activity against E. coli, Salmonella and Shigella while pseudomonas showed some resistance. Based on the results, PANI/PVA/ NiOx (5%) composite showed the highest activity against the tested bacterial strains, thus showing its potential to be used as an effective antibacterial agent.
Collapse
Affiliation(s)
- Gul Rahman
- Institute of Chemical Sciences , University of Peshawar , Peshawar 25120 , Pakistan , Tel.: +92-919216652
| | - Mansoor Khan
- Institute of Chemical Sciences , University of Peshawar , Peshawar 25120 , Pakistan
| | - Zahid Khan
- Institute of Chemical Sciences , University of Peshawar , Peshawar 25120 , Pakistan
| | | | - Muhammad Saleem Khan
- National Centre of Excellence in Physical Chemistry , University of Peshawar , Peshawar 25120 , Pakistan
| | - Luqman Ali Shah
- National Centre of Excellence in Physical Chemistry , University of Peshawar , Peshawar 25120 , Pakistan
| |
Collapse
|
14
|
ul Haq A, Jan MR, Shah J, Sadia M, Saeed M. A Comparative Sorption Study of Ni (II) form Aqueous Solution Using Silica Gel, Amberlite IR-120 and Sawdust. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2017-1082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.
Collapse
Affiliation(s)
- Atta ul Haq
- Department of Chemistry , Government College University Faisalabad , Faisalabad , Pakistan , Phone: +923009302365,
| | | | - Jasmin Shah
- Institute of Chemical Sciences, University of Peshawar , KPK , Pakistan
| | - Maria Sadia
- University of Malakand, Chakdara, Dir , KPK , Pakistan
| | - Muhammad Saeed
- Department of Chemistry , Government College University Faisalabad , Faisalabad , Pakistan
| |
Collapse
|