1
|
Tholozan LV, Valério Filho A, Maron GK, Carreno NLV, da Rocha CM, Bordin J, da Rosa GS. Sphagnum perichaetiale Hampe biomass as a novel, green, and low-cost biosorbent in the adsorption of toxic crystal violet dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52472-52484. [PMID: 36840883 DOI: 10.1007/s11356-023-26068-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
In this study, the Sphagnum perichaetiale Hampe biomass was collected, characterized, and used as a biosorbent in the removal of crystal violet from water. The chemical and morphological results suggest that even after minimal experimental procedures, the biomass presented interesting properties regarding the adsorption of contaminants. Results of adsorption showed that the pH was not a relevant parameter and the best adsorbent dosage was 0.26 g L-1. The kinetic results presented an initial fast step and the equilibrium was reached after 180 min. For the equilibrium data, the best adjustment occurred for the Sips model, reaching a maximum adsorption capacity of 271.05 mg g-1 and the removal percentage obtained in the maximum adsorbent dosage was 97.11%. The thermodynamic studies indicated a reversible process and that the mass-transfer phenomena is governed by the physisorption mechanism. In addition to its great performance as a biosorbent, Sphagnum perichaetiale biomass also presents economic and sustainable benefits, as its production does not require costs with reagents or energy, usually used in chemical and physical activation. The reversible process indicated that the biosorbent could be reused, decreasing the costs related to the treatment of the effluents. Thus, Sphagnum perichaetiale biomass can be considered an efficient low-cost and eco-friendly biosorbent.
Collapse
Affiliation(s)
- Luana Vaz Tholozan
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul, 96413-172, Brazil
| | - Alaor Valério Filho
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Guilherme Kurz Maron
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Neftali Lenin Villarreal Carreno
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Cacinele Mariana da Rocha
- Center for Coastal Studies, Limnology and Marine, Federal University of Rio Grande do Sul, 976 Tramandaí, Imbé, Rio Grande do Sul, 95625-000, Brazil
| | - Juçara Bordin
- State University of Rio Grande do Sul, North Coast Unit, 1456 Machado de Assis, Osório, Rio Grande do Sul, 95520-000, Brazil
| | - Gabriela Silveira da Rosa
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul, 96413-172, Brazil.
| |
Collapse
|
2
|
Ahmad A, Jamil SNAM, Choong TSY, Abdullah AH, Faujan NH, Adeyi AA, Daik R, Othman N. Removal of Cationic Dyes by Iron Modified Silica/Polyurethane Composite: Kinetic, Isotherm and Thermodynamic Analyses, and Regeneration via Advanced Oxidation Process. Polymers (Basel) 2022; 14:polym14245416. [PMID: 36559783 PMCID: PMC9786703 DOI: 10.3390/polym14245416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging dye pollution from textile industrial effluents is becoming more challenging for researchers worldwide. The contamination of water by dye effluents affects the living organisms in an ecosystem. Methylene blue (MB) and malachite green (MG) are soluble dyes with a high colour intensity even at low concentration and are hazardous to living organisms. The adsorption method is used in most wastewater plants for the removal of organic pollutants as it is cost-effective, has a high adsorption capacity, and good mechanical stabilities. In this study, a composite adsorbent was prepared by impregnating iron modified silica (FMS) onto polyurethane (PU) foam to produce an iron modified silica/polyurethane (FMS/PU) composite. The composite adsorbent was utilised in batch adsorption of the cationic dyes MB and MG. The effect of adsorption parameters such as the adsorbent load, pH, initial dye concentration, and contact time were discussed. Adsorption kinetics and isotherm were implemented to understand the adsorption mechanism for both dyes. It was found that the adsorption of MB and MG followed the pseudo-second order model. The Langmuir model showed a better fit than the Freundlich model for the adsorption of MB and MG, indicating that the adsorption occurred via the monolayer adsorption system. The maximum adsorption capacity of the FMS/PU obtained for MB was 31.7 mg/g, while for MG, it was 34.3 mg/g. The thermodynamic study revealed that the adsorption of MB and MG were exothermic and spontaneous at room temperature. In addition, the regeneration of FMS/PU was conducted to investigate the composite efficiency in adsorbing dyes for several cycles. The results showed that the FMS/PU composite could be regenerated up to four times when the regeneration efficiency dropped drastically to less than 20.0%. The impregnation of FMS onto PU foam also minimised the adsorbent loss into the environment.
Collapse
Affiliation(s)
- Afiqah Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Nurul Ain Md. Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| | - Thomas S. Y. Choong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Abdul Halim Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Hana Faujan
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Abel A. Adeyi
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti, ABUAD, KM. 8.5, Afe Babalola Way, PMB 5454, Ado-Ekiti 360101, Nigeria
| | - Rusli Daik
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nurhanisah Othman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
3
|
Application of synthesized Fish Scale Chito-Protein (FSC) for the treatment of abattoir wastewater: Coagulation-flocculation kinetics and equilibrium modeling. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
You X, Zhou R, Zhu Y, Bu D, Cheng D. Adsorption of dyes methyl violet and malachite green from aqueous solution on multi-step modified rice husk powder in single and binary systems: Characterization, adsorption behavior and physical interpretations. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128445. [PMID: 35150995 DOI: 10.1016/j.jhazmat.2022.128445] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
A novel modified rice husk (MRH) has been prepared for removing cationic dyes in both single system and binary system. SEM-EDS, FT-IR, XRD and XPS were used to characterize the physical and chemical properties of MRH. It showed that the maximum adsorption capacity of MRH for methyl violet (MV) and malachite green (MG) in single system was 154.49 and 996.97 mg g-1, while in binary system was 530.94 and 408.58 mg g-1, respectively. The experimental results showed that the pseudo-second-order kinetic model was better to describe the kinetic behavior of MV and MG adsorption. By using double layer adsorption model, we found that the nD for MV adsorption were 2.52, 2.65 and 3.34 at 298, 308 and 318 K, respectively, and the nD for MG adsorption were 4.59, 4.85 and 4.30, respectively. These results illustrated that multiple dye molecules were adsorbed on one adsorption site in non-parallel direction, indicating that the adsorption of dyes is multi-molecular mechanism. Furthermore, synergistic and antagonistic adsorption might be existed simultaneously in binary system. In summary, MRH has been shown well adsorption properties and reusability and our finding might provide a new idea for developing low-cost, efficient and reusable adsorbent to remove dyes from wastewater.
Collapse
Affiliation(s)
- Xun You
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China; Engineering Research Center of Food Biotechnology of Chinese Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Rui Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China; Engineering Research Center of Food Biotechnology of Chinese Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yinxia Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China; Engineering Research Center of Food Biotechnology of Chinese Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Dingdong Bu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China; Engineering Research Center of Food Biotechnology of Chinese Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China; Engineering Research Center of Food Biotechnology of Chinese Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
5
|
Pholnak P, Sittiyothee S, Sirisathitkul C, Sirisathitkul Y. Dye removal efficiency of fresh and dry alginate beads incorporating zinc oxide. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1080/25765299.2022.2040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Pachara Pholnak
- Department of Physics, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Sakuna Sittiyothee
- Department of Physics, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Chitnarong Sirisathitkul
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
- Division of Physics, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Yaowarat Sirisathitkul
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
- School of Engineering and Technology, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
6
|
Ugur N, Bilici Z, Ocakoglu K, Dizge N. Synthesis and characterization of composite catalysts comprised of ZnO/MoS2/rGO for photocatalytic decolorization of BR 18 dye. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Abstract
Rice is the second most extensively consumed food ingredient, and its by-products in the paddy field include rice husk and straw. Rice husk ash, resulting from rice husk burning, is considered an environment menace, inducing negative effects on the area in which it is disposed of. In this study, rice husk was applied as a silicate source to obtain mesoporous silica material. Characterization techniques confirmed the well-ordered mesophase and resemblance of mesoporous silica resulting from rice husk ash with one obtained from conventional silica sources. The mesoporous silica material was further used as catalyst support. The resulting catalysts were used for rhodamine 110 oxidation, proving high potential for oxidizing hazardous organic compounds, such as dyes from water, resulting in environmentally harmless products.
Collapse
|
8
|
Efficient batch and Fixed-Bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
9
|
Falaki Z, Bashiri H. Preparing an adsorbent from the unused solid waste of Rosewater extraction for high efficient removal of Crystal Violet. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02222-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Grassi P, Drumm FC, Georgin J, Franco DSP, Dotto GL, Foletto EL, Jahn SL. Application of Cordia trichotoma sawdust as an effective biosorbent for removal of crystal violet from aqueous solution in batch system and fixed-bed column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6771-6783. [PMID: 33009617 DOI: 10.1007/s11356-020-11005-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
In this work, for the first time, Cordia trichotoma sawdust, a residue derived from noble wood processing, was applied as an alternative biosorbent for the removal of crystal violet by discontinuous and continuous biosorption processes. The optimum conditions for biosorption of crystal violet were 7.5 pH and a biosorbent dosage of 0.8 g L-1. The biosorption kinetics showed that the equilibrium was reached at 120 min, achieving a maximum biosorption capacity of 107 mg g-1 for initial dye concentration of 200 mg L-1. The Elovich model was the proper model for representing the biosorption kinetics. The isotherm assays showed that the rise of temperature causes an increase in the biosorption capacity of the crystal violet, with a maximum biosorption capacity of 129.77 mg g-1 at 328 K. The Langmuir model was the most proper model for describing the behavior. The sign of ΔG0 indicates that the process was spontaneous and favorable, whereas the ΔH0 indicates an endothermic process. The treatment of the colored simulated effluent composed by dyes and salts resulted in 80% of color removal. The application of biosorbent in the fixed-bed system achieved a breakthrough time of 505 min, resulting in 83.35% of color removal. The Thomas and Yoon-Nelson models were able to describe the fixed-bed biosorption behavior. This collection of experimental evidence shows that the Cordia trichotoma sawdust can be applied for the removal of crystal violet and a mixture of other dyes that contain them.
Collapse
Affiliation(s)
- Patrícia Grassi
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Fernanda Caroline Drumm
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison Stracke Pfingsten Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil.
| | - Edson Luiz Foletto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Sérgio Luiz Jahn
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
11
|
Bouhadjra K, Lemlikchi W, Ferhati A, Mignard S. Enhancing removal efficiency of anionic dye (Cibacron blue) using waste potato peels powder. Sci Rep 2021; 11:2090. [PMID: 33483564 PMCID: PMC7822877 DOI: 10.1038/s41598-020-79069-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
In the present study, the potato peel waste (PP) was used for the removal of the anionic dye Cibacron Blue P3R from an aqueous solution, activated with phosphoric acid (PPa) and calcined at 800 °C (PPc). The materials were characterized by Scanning Electron Microscope, Energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy. The effects of various experimental parameters (pH, dye concentration, contact time) were also studied. The experimental results have shown that PPc has a greater capacity compared to pp and ppa. The capacity of PP bio-char (PPc) is 270.3 mg g−1 compared to PP (100 mg g−1) and PPa (125 mg g−1). Equilibrium experiments at 180 min for all materials were carried out at optimum pH (2.2): 76.41, 88.6 and 94% for PP, PPa and PPc respectively; and the Langmuir models agreed very well with experimental data. The ability of sorbent for the sorption of CB dye follows this order: calcined > activated > native materials. Potato peel biochar (PPc) can be considered a promising adsorbent for removing persistent dyes from water.
Collapse
Affiliation(s)
- Kahina Bouhadjra
- Laboratory of Applied Chemistry and Chemical Engineering (LCAGC), University of Tizi-Ouzou, Tizi-Ouzou, Algeria.,High National School of Public Works (ENSTP), El Kouba, Algiers, Algeria
| | - Wahiba Lemlikchi
- Laboratory of Applied Chemistry and Chemical Engineering (LCAGC), University of Tizi-Ouzou, Tizi-Ouzou, Algeria. .,University of Algiers 1, Algiers, Algeria.
| | - Azedine Ferhati
- Laboratory Chemistry and Environmental Chemistry (LCCE), University of Batna 1, Batna, Algeria.
| | - Samuel Mignard
- Institute of Chemistry of Environments and Materials of Poitiers (IC2MP), Poitiers, France
| |
Collapse
|
12
|
Essekri A, Aarab N, Hsini A, Ajmal Z, Laabd M, El Ouardi M, Ait Addi A, Lakhmiri R, Albourine A. Enhanced adsorptive removal of crystal violet dye from aqueous media using citric acid modified red-seaweed: experimental study combined with RSM process optimization. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1857263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abdelilah Essekri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Nouh Aarab
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Zeeshan Ajmal
- College of Engineering, China Agricultural University, Beijing, PR China
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mahmoud El Ouardi
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
| | - Abdelaziz Ait Addi
- Physical Chemistry and Environment Team, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Rajae Lakhmiri
- Laboratory of Materials and Resources Valorization, Faculty of Sciences and Techniques, Abdelmalek Essaadi University, Tangier, Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
13
|
Das P, Nisa S, Debnath A, Saha B. Enhanced adsorptive removal of toxic anionic dye by novel magnetic polymeric nanocomposite: optimization of process parameters. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1845958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Payel Das
- Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, India
| | - Saimatun Nisa
- Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, India
| | - Animesh Debnath
- Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, India
| | - Biswajit Saha
- Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura, India
| |
Collapse
|
14
|
Mashkoor F, Nasar A. Facile synthesis of polypyrrole decorated chitosan-based magsorbent: Characterizations, performance, and applications in removing cationic and anionic dyes from aqueous medium. Int J Biol Macromol 2020; 161:88-100. [DOI: 10.1016/j.ijbiomac.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
|
15
|
Javed F, Ahmad SW, Ikhlaq A, Rehman A, Saleem F. Elimination of basic blue 9 by electrocoagulation coupled with pelletized natural dead leaves ( Sapindus mukorossi) biosorption. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:462-473. [PMID: 33000971 DOI: 10.1080/15226514.2020.1825328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elimination of basic blue 9 (BB-9), a cationic textile dye, by electrocoagulation coupled with biosorption exploiting pelletized natural dead leaves (PNDL) of Sapindus mukorossi, an economic alternative biosorbent, was investigated. The experimental runs were conducted in a laboratory-scale hybrid reactor loaded with Al electrodes, aeration spargers and PNDL packed twin suspended buckets. The pelletized adsorbents offer key advantages of good mechanical stability, lesser clogging risk, and easy disengagement as compared to powdered adsorbents. The parameters of current density, pH, PNDL dose, and initial dye concentration were studied for the decolorization and COD removal efficiency. The experimental results revealed that up to 99.9% decolorization and 90.01% COD removal efficiency achieved after 8 min at optimum condition of current density (j)=20.27 mA/cm2, pH = 9, PNDL dose = 6 g/L, and initial dye concentration = 50 mg/L. The BB-9 elimination followed the first-order kinetics with K1=0.318 min-1 and R2=0.997. The results revealed the potential of PNDL as a feasible biosorbent with the effective performance of the coupled process.
Collapse
Affiliation(s)
- Farhan Javed
- Department of Chemical and Polymer Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Syed Waqas Ahmad
- Department of Chemical and Polymer Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Abdul Rehman
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Faisal Saleem
- Department of Chemical and Polymer Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan
| |
Collapse
|
16
|
Moradi A, Rahimpour F, Salehi MA, Shojaeimehr T. Impact of operating conditions for the continuous‐flow removal of dye effluents in a fixed‐bed reactor using light expanded clay aggregate as a green adsorbent with ultrasound‐assisted desorption. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Azin Moradi
- Biotechnology Research Laboratory, Chemical Engineering Department, Faculty of Petroleum and Chemical Engineering Razi University Kermanshah Iran
- Department of Chemical Engineering University of Guilan Rasht Iran
| | - Farshad Rahimpour
- Biotechnology Research Laboratory, Chemical Engineering Department, Faculty of Petroleum and Chemical Engineering Razi University Kermanshah Iran
| | | | - Tahereh Shojaeimehr
- Department of Chemistry Technische Universität Berlin Berlin Germany
- Chemical Engineering Department Islamic Azad University Sanandaj Branch
| |
Collapse
|