1
|
Zada A, Khan M, Hussain Z, Shah MIA, Ateeq M, Ullah M, Ali N, Shaheen S, Yasmeen H, Ali Shah SN, Dang A. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
The alarming energy crises has forced the scientific community to work for sustainable energy modules to meet energy requirements. As for this, ZnO/g-C3N4 nanocomposites with proper heterojunction were fabricated by coupling a proper amount of ZnO with 2D graphitic carbon nitride (g-C3N4) nanosheets and the obtained nanocomposites were applied for photocatalytic hydrogen generation from water under visible light illumination (λ > 420 nm). The morphologies and the hydrogen generation performance of fabricated photocatalysts were characterized in detail. Results showed that the optimized 5ZnO/g-C3N4 nanocomposite produced 70 µmol hydrogen gas in 1 h compare to 8 µmol by pure g-C3N4 under identical illumination conditions in the presence of methanol without the addition of cocatalyst. The much improved photoactivities of the nanocomposites were attributed to the enhanced charge separation through the heterojunction as confirmed from photoluminescence study, capacity of the fabricated samples for •OH radical generation and steady state surface photovoltage spectroscopic (SS-SPS) measurements. We believe that this work would help to fabricate low cost and effective visible light driven photocatalyst for energy production.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi’an 710072 , China
| | - Zahid Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | | | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Mohib Ullah
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology , Harbin 150080 China
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| | - Shabana Shaheen
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology , Harbin 150080 China
| | - Humaira Yasmeen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University , Harbin 150040 , China
| | - Syed Niaz Ali Shah
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Alei Dang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi’an 710072 , China
| |
Collapse
|
2
|
DFG priority program SPP 1613 “ Fuels Produced Regeneratively Through Light-Driven Water Splitting”. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2000-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Kaiser B, Frotscher L, Jaegermann W. DFG priority program SPP 1613 “ Fuels Produced Regeneratively Through Light-Driven Water Splitting”. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-3000-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B. Kaiser
- Institute for Materials Science , Technical University Darmstadt , 64287 Darmstadt , Germany
| | - L. Frotscher
- Institute for Materials Science , Technical University Darmstadt , 64287 Darmstadt , Germany
| | - W. Jaegermann
- Institute for Materials Science , Technical University Darmstadt , 64287 Darmstadt , Germany
| |
Collapse
|