1
|
Chen J, Shehzad H, Wang J, Liu Z, Farooqi ZH, Sharif A, Ahmed E, Begum R, Xu L, Zhou L, Ouyang J, Irfan A, Chaudhry AR, Ali M. Investigating the synergetic effect of tungsten oxide doping into the 1,3-dicarbonyl moiety grafted chitosan and phytic acid impregnated sodium alginate for efficient U(VI) adsorption. Int J Biol Macromol 2024; 277:134160. [PMID: 39059538 DOI: 10.1016/j.ijbiomac.2024.134160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this work, chemical modification of the chitosan with ethyl acetoacetate was performed through a base-catalyzed reaction in which epichlorohydrin facilitated the insertion as well as nucleophilic substitution reaction to graft the 1,3-dioxo moiety across the linear chains of the base biopolymer to establish specificity and selectivity for U(VI) removal. The modified chitosan (EAA-CS) was intercalated into phosphate rich alginate matrix (PASA). Later on, the WO3-doped composites with different WO3 to PASA mass ratio were prepared and characterized using FTIR, XPS, SEM-EDS, XRD, and elemental mapping analysis. WO3 significantly contributed to chemically stable inorganic-organic composites with improved porous texture. Among the prepared composites, MCPS-3 microspherical beads, having mass ratio of 30.0 % w/w, exhibited excellent sorption capacity for U(VI) at an optimal pH 4.5. The successful U(VI) sorption was validated by the existence of two U4f peaks at 392.25 and 381.36 eV due to U4f5/2 and U4f7/2 sub-peaks with an intensity ratio of 3:4, respectively. Batch mode sorption kinetics followed pseudo-second-order rate equation (R2 ≈ 0.99, qe,th ≈ 116.88 mg/g, k2 = 0.86 × 10-4 g/mg.min-1) and equilibrium sorption data aligns with Langmuir (R2 = 0.99, qm = 343.85 mg/g at 310 K and pH = 4.5, KL = 2.00 × 10-2 L/mg) and Temkin models (R2 ≈ 0.99). Thermodynamic parameters ΔHo (30.51 kJ/mol), ΔSo (0.19 kJ/mol.K) and ΔGo (-25.64, -26.89, and - 27.91 kJ/mol) at 298, 305, and 310 K, respectively, suggested that the uptake process is feasible, endothermic and spontaneous. Based on these findings, it is reasonable to conclude that MCPS-3 could be a better hydrogel-based biomaterial for appreciable uranium recovery.
Collapse
Affiliation(s)
- Jiaai Chen
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Hamza Shehzad
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Junjie Wang
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Zhirong Liu
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Li Xu
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Limin Zhou
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Jinbo Ouyang
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Muhammad Ali
- Faculty of Agriculture Sciences, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
2
|
Liu D, Shehzad H, Zhou L, Farooqi ZH, Sharif A, Ahmed E, Ouyang J, Masrur DM, Abed K, Fatima M, Rehman S. Encapsulation of Bamboosa vulgaris culms derived activated biochar into hierarchical permeable, phosphate rich and functionalized alginate aerogel composites and its contribution in U(VI) adsorption. Int J Biol Macromol 2024; 280:135690. [PMID: 39284474 DOI: 10.1016/j.ijbiomac.2024.135690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
In this study, a facile methodology was designed to encapsulate Bamboosa vulgaris culms derived activated biochar (BVC) in a variable mass ratio, into a three-dimensional hierarchical porous and permeable and amino-thiocarbamated alginate (TSC) to prepare hybrid biosorbents (BVC-MSA). These ultralight and lyophilized phosphate rich macroporous sorbents were rationally characterized through FTIR, XRD, BET, SEM-EDS, elemental mapping, XPS techniques and employed for efficient UO22+ adsorption from aqueous solutions. The phytic acid (PA) was found to be a suitable hydrophilic and phosphorylating agent for the TSC matrix through hydrogen-bonded crosslinking when employed in a correct mass ratio (1:3). The SEM-EDS and XPS analyses confirmed the UO22+ sorption onto BVC-MSA-3 (the most suitable composite with a BVC/TSC mass ratio of 30.0 % w/w) and provided evidence of heteroatom involvement in developing the physico-chemical interactions. The BCV-MSA-3 exhibited the best response as a sorbent during kinetics/sorption process, therefore, it was selected to study the equilibrium sorption studies. The BCV-MSA-3 removal efficiency increased from 12.1 to 94.2 % using 0.2 to 1.8 g/L sorbent dose at pH (4.5). The mentioned sorbent displayed a significant maximum sorption capacity qm (309.55 mg/g at 35 °C) calculated through the best-fitted Langmuir and Temkin models (R2 ≈ 0.99). The sorption kinetics followed the pseudo-second-order (PSORE) model and exhibited fast sorption rate teq (180 min). Thermodynamic parameters clarified that the sorption process is feasible ΔGo (-25.3 to -27.6 kJ/mol kJ/mol), endothermic ΔHo (27.17 kJ/mol), and proceeds with a positive entropy (0.176 kJ/mol.K). The study shows that BCV-MSA-3 could be an alternative and auspicious sorbent for uranium removal from aqueous solution.
Collapse
Affiliation(s)
- Dan Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China
| | - Hamza Shehzad
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China; School of Chemistry and Materials Science, East China University of Technology, China.
| | - Limin Zhou
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Jinbo Ouyang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China
| | - Din Mohammad Masrur
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - KhalilUllah Abed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Manahil Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Sadia Rehman
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
3
|
Shehzad H, Farooqi ZH, Ahmad E, Sharif A, Irfan A, Din MI, Begum R, Liu Z, Zhou L, Ouyang J, Rasheed L, Akram T, Mahmood A. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
In present work, facile synthesis of a biocompatible hybrid biosorbent based on diethylenetriaminepentaacetic acid (DTPA) modified chitosan immobilized in organo-functionalized sodium alginate matrix (DTPA-MCSA) was carried out. DTPA-MCSA was casted in microspherical hydrogel beads. Three dimensional microporous geometry of the biosorbent remained well preserved as observed in SEM analysis which revealed the improved mechanical strength of the alginate matrix. Surface functionalization of base biopolymers was confirmed by FTIR and SEM analysis. Equilibrium sorption studies using DTPA-MCSA for Cu(II) from aqueous medium were carried out in batch mode and found considerably dependent on pH, contact sorption time, temperature and initial copper concentration. Isothermal sorption data showed close correlation with Langmuir model as evident from nonlinear fitting of data (R
2 ˜ 0.99) at different temperatures. The experimental sorption capacity (q
e) was found nearly 67 mg/g using 100 mg/L initial concentration of copper ions. Kinetic studies were conducted using different initial concentrations for better elucidation of results and it showed better correlation with pseudo second order rate equation which unveiled that strong ion pair coordination and complexation exist between Cu(II) and newly grafted chelating sites of DTPA-MCSA. Thermodynamic parameters suggested that the adsorption process is spontaneous and endothermic. The results concluded that DTPA-MCSA could be a better candidate for adsorptive remediation of copper ions from liquid waste.
Collapse
Affiliation(s)
- Hamza Shehzad
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Zahoor H. Farooqi
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ejaz Ahmad
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ahsan Sharif
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science , King Khalid University , Abha 61413 , Saudi Arabia
- Research Center for Advanced Materials Science , King Khalid University , Abha 61413 , Saudi Arabia
| | - Muhammad Imran Din
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Robina Begum
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Zhirong Liu
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang 330013 , P.R. China
| | - Limin Zhou
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang 330013 , P.R. China
| | - Jinbo Ouyang
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang 330013 , P.R. China
| | - Lubna Rasheed
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore 54770 , Pakistan
| | - Tehreem Akram
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Azhar Mahmood
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| |
Collapse
|