1
|
Santino F, Gentilucci L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010346. [PMID: 36615540 PMCID: PMC9822356 DOI: 10.3390/molecules28010346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
The κ-opioid receptor (KOR) has recently emerged as an alternative therapeutic target for the development of pain medications, without deleterious side effects associated with the μ-opioid receptor (MOR). However, modulation of KOR is currently under investigation for the treatment of depression, mood disorders, psychiatric comorbidity, and specific drug addictions. However, KOR agonists also trigger adverse effects including sedation, dysphoria, and hallucinations. In this respect, there is currently much debate on alternative paradigms. Recent effort has been devoted in search of biased ligands capable of selectively activating favorable signaling over signaling associated with unwanted side effects. On the other hand, the use of partial agonists is expected to allow the analgesia to be produced at dosages lower than those required to produce the adverse effects. More empirically, the unwanted central effects can be also avoided by using peripherally restricted agonists. In this review, we discuss the more recent trends in the design of KOR-selective, biased or partial, and finally, peripherally acting agonists. Special emphasis is given on the discussion of the most recent approaches for controlling functional selectivity of KOR-specific ligands.
Collapse
|
2
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
3
|
Van Baelen AC, Robin P, Kessler P, Maïga A, Gilles N, Servent D. Structural and Functional Diversity of Animal Toxins Interacting With GPCRs. Front Mol Biosci 2022; 9:811365. [PMID: 35198603 PMCID: PMC8859281 DOI: 10.3389/fmolb.2022.811365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide toxins from venoms have undergone a long evolutionary process allowing host defense or prey capture and making them highly selective and potent for their target. This has resulted in the emergence of a large panel of toxins from a wide diversity of species, with varied structures and multiple associated biological functions. In this way, animal toxins constitute an inexhaustible reservoir of druggable molecules due to their interesting pharmacological properties. One of the most interesting classes of therapeutic targets is the G-protein coupled receptors (GPCRs). GPCRs represent the largest family of membrane receptors in mammals with approximately 800 different members. They are involved in almost all biological functions and are the target of almost 30% of drugs currently on the market. Given the interest of GPCRs in the therapeutic field, the study of toxins that can interact with and modulate their activity with the purpose of drug development is of particular importance. The present review focuses on toxins targeting GPCRs, including peptide-interacting receptors or aminergic receptors, with a particular focus on structural aspects and, when relevant, on potential medical applications. The toxins described here exhibit a great diversity in size, from 10 to 80 amino acids long, in disulfide bridges, from none to five, and belong to a large panel of structural scaffolds. Particular toxin structures developed here include inhibitory cystine knot (ICK), three-finger fold, and Kunitz-type toxins. We summarize current knowledge on the structural and functional diversity of toxins interacting with GPCRs, concerning first the agonist-mimicking toxins that act as endogenous agonists targeting the corresponding receptor, and second the toxins that differ structurally from natural agonists and which display agonist, antagonist, or allosteric properties.
Collapse
Affiliation(s)
- Anne-Cécile Van Baelen
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Robin
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Kessler
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arhamatoulaye Maïga
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Gilles
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Denis Servent
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Denis Servent,
| |
Collapse
|
4
|
Yadav VD, Kumar L, Kumari P, Kumar S, Singh M, Siddiqi MI, Yadav PN, Batra S. Synthesis and Assessment of Fused β-Carboline Derivatives as Kappa Opioid Receptor Agonists. ChemMedChem 2021; 16:1917-1926. [PMID: 33599108 DOI: 10.1002/cmdc.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Indexed: 12/17/2022]
Abstract
The synthesis of 5-formyl-6-aryl-6H-indolo[3,2,1-de][1,5] naphthyridine-2-carboxylates by reaction between 1-formyl-9H-β-carbolines and cinnamaldehydes in the presence of pyrrolidine in water with microwave irradiation is described. Pharmacophoric modification of the formyl group offered several new fused β-carboline derivatives, which were investigated for their κ-opioid receptor (KOR) agonistic activity. Two compounds 4 a and 4 c produced appreciable agonist activity on KOR with EC50 values of 46±19 and 134±9 nM, respectively. Moreover, compound-induced KOR signaling studies suggested both compounds to be extremely G-protein-biased agonists. The analgesic effect of 4 a was validated by the increase in tail flick latency in mice in a time-dependent manner, which was completely blocked by the KOR-selective antagonist norBNI. Moreover, unlike U50488, an unbiased full KOR agonist, 4 a did not induce sedation. The docking of 4 a with the human KOR was studied to rationalize the result.
Collapse
Affiliation(s)
- Veena D Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Lalan Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Poonam Kumari
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Sakesh Kumar
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Maninder Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Mohammad I Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Li X, Wan H, Dong P, Wang B, Zhang L, Hu Q, Zhang T, Feng J, He F, Bai C, Zhang L, Tao W. Discovery of SHR0687, a Highly Potent and Peripheral Nervous System-Restricted KOR Agonist. ACS Med Chem Lett 2020; 11:2151-2155. [PMID: 33214823 DOI: 10.1021/acsmedchemlett.0c00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Analgesics with no abuse liability are highly demanded in the market. KOR agonists have been proved to be strong analgesics without MOR agonist-related side effects, such as respiratory depression, tolerance, and dependence liability; however, activation of KOR in the central nervous system (CNS) may cause sedation and anxiety. It has been reported that peripheral KOR activation produces comparable bioactivity without CNS-related side effects. Herein, we designed and synthesized a novel tetrapeptide (SHR0687), which was shown to be a highly potent KOR agonist with excellent selectivity over other opioid receptors, such as MOR and DOR. In addition, SHR0687 displayed favorable PK profiles across species, as well as robust in vivo efficacy in a rat carrageenan-induced pain model. Notably, SHR0687 exhibited negligible blood-brain barrier penetration, which was meaningful in minimizing CNS-related side effects.
Collapse
Affiliation(s)
- Xin Li
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Ping Dong
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Bin Wang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Lei Zhang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Qiyue Hu
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Ting Zhang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Jun Feng
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Feng He
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
- Chengdu Suncadia Medicine CO., LTD., 88 South Keyuan Road, Chengdu, Si Chuan 610000, China
| | - Chang Bai
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Lianshan Zhang
- Jiangsu Hengrui Medicine CO., LTD., Lianyungang, Jiangsu 222047, China
| | - Weikang Tao
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
- Chengdu Suncadia Medicine CO., LTD., 88 South Keyuan Road, Chengdu, Si Chuan 610000, China
| |
Collapse
|
6
|
Szymaszkiewicz A, Storr M, Fichna J, Zielinska M. Enkephalinase inhibitors, potential therapeutics for the future treatment of diarrhea predominant functional gastrointestinal disorders. Neurogastroenterol Motil 2019; 31:e13526. [PMID: 30549162 DOI: 10.1111/nmo.13526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
The endogenous opioid system (EOS) is considered being a crucial element involved in the pathophysiology of irritable bowel syndrome (IBS) as it regulates gastrointestinal (GI) homeostasis through modulation of motility and water and ion secretion/absorption. Along with opioid receptors (ORs), the following components of EOS can be distinguished: 1. endogenous opioid peptides (EOPs), namely enkephalins, endorphins, endomorphins and dynorphins, and 2. peptidases, which regulate the metabolism (synthesis and degradation) of EOPs. Enkephalins, which are δ-opioid receptors agonists, induce significant effects in the GI tract as they act as potent pro-absorptive neurotransmitters. The action of enkephalins and other EOPs is limited, since EOPs are easily and rapidly inactivated by a natural metalloendopeptidase (enkephalinase/neprilysin) and aminopeptidase N. Studies show that the activity of EOPs can be enhanced by inhibition of these enzymes. In this review, we discuss the antidiarrheal and antinociceptive potential of enkephalinase inhibitors. Furthermore, our review is to answer the question whether enkephalinase inhibitors may be helpful in the future treatment of diarrhea predominant functional GI disorders.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Martin Storr
- Department of Medicine, Ludwig Maximilians University Munich, Munich, Germany.,Center of Endoscopy, Starnberg, Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielinska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Machelska H, Celik MÖ. Advances in Achieving Opioid Analgesia Without Side Effects. Front Pharmacol 2018; 9:1388. [PMID: 30555325 PMCID: PMC6282113 DOI: 10.3389/fphar.2018.01388] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Tarrasón G, Carcasona C, Eichhorn P, Pérez B, Gavaldà A, Godessart N. Characterization of the chloroquine-induced mouse model of pruritus using an automated behavioural system. Exp Dermatol 2017; 26:1105-1111. [DOI: 10.1111/exd.13392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Gema Tarrasón
- Skin Biology and Pharmacology; Almirall R&D Center; Sant Feliu de Llobregat Barcelona Spain
| | - Carla Carcasona
- Skin Biology and Pharmacology; Almirall R&D Center; Sant Feliu de Llobregat Barcelona Spain
| | - Peter Eichhorn
- Pharmacokinetics and Metabolism; Almirall R&D Center; Sant Feliu de Llobregat Barcelona Spain
| | - Bibiana Pérez
- Pharmacokinetics and Metabolism; Almirall R&D Center; Sant Feliu de Llobregat Barcelona Spain
| | - Amadeu Gavaldà
- Skin Biology and Pharmacology; Almirall R&D Center; Sant Feliu de Llobregat Barcelona Spain
| | - Núria Godessart
- Skin Biology and Pharmacology; Almirall R&D Center; Sant Feliu de Llobregat Barcelona Spain
| |
Collapse
|
10
|
Floettmann E, Bui K, Sostek M, Payza K, Eldon M. Pharmacologic Profile of Naloxegol, a Peripherally Acting µ-Opioid Receptor Antagonist, for the Treatment of Opioid-Induced Constipation. J Pharmacol Exp Ther 2017; 361:280-291. [PMID: 28336575 PMCID: PMC5399635 DOI: 10.1124/jpet.116.239061] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ-opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ-opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ-opioid receptor in vitro, naloxegol was a potent inhibitor of binding (Ki = 7.42 nM) and a neutral competitive antagonist (pA2 - 7.95); agonist effects were <10% up to 30 μM and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ-opioid receptor in the ENS while preserving CNS-mediated analgesia.
Collapse
Affiliation(s)
- Eike Floettmann
- AstraZeneca UK Ltd., Cambridge, United Kingdom (E.F.); AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (K.B.); AstraZeneca Pharmaceuticals LP, Gaithersburg, Maryland (M.S.); AstraZeneca Canada, Montreal, Quebec, Canada (K.P.); and Nektar Therapeutics, San Francisco, California, Primary laboratory of origin: AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (M.E.)
| | - Khanh Bui
- AstraZeneca UK Ltd., Cambridge, United Kingdom (E.F.); AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (K.B.); AstraZeneca Pharmaceuticals LP, Gaithersburg, Maryland (M.S.); AstraZeneca Canada, Montreal, Quebec, Canada (K.P.); and Nektar Therapeutics, San Francisco, California, Primary laboratory of origin: AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (M.E.)
| | - Mark Sostek
- AstraZeneca UK Ltd., Cambridge, United Kingdom (E.F.); AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (K.B.); AstraZeneca Pharmaceuticals LP, Gaithersburg, Maryland (M.S.); AstraZeneca Canada, Montreal, Quebec, Canada (K.P.); and Nektar Therapeutics, San Francisco, California, Primary laboratory of origin: AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (M.E.)
| | - Kemal Payza
- AstraZeneca UK Ltd., Cambridge, United Kingdom (E.F.); AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (K.B.); AstraZeneca Pharmaceuticals LP, Gaithersburg, Maryland (M.S.); AstraZeneca Canada, Montreal, Quebec, Canada (K.P.); and Nektar Therapeutics, San Francisco, California, Primary laboratory of origin: AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (M.E.)
| | - Michael Eldon
- AstraZeneca UK Ltd., Cambridge, United Kingdom (E.F.); AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (K.B.); AstraZeneca Pharmaceuticals LP, Gaithersburg, Maryland (M.S.); AstraZeneca Canada, Montreal, Quebec, Canada (K.P.); and Nektar Therapeutics, San Francisco, California, Primary laboratory of origin: AstraZeneca Pharmaceuticals LP, Wilmington, Delaware (M.E.)
| |
Collapse
|
11
|
Chen L, Ilham SJ, Feng B. Pharmacological Approach for Managing Pain in Irritable Bowel Syndrome: A Review Article. Anesth Pain Med 2017; 7:e42747. [PMID: 28824858 PMCID: PMC5556397 DOI: 10.5812/aapm.42747] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 12/13/2022] Open
Abstract
Context Visceral pain is a leading symptom for patients with irritable bowel syndrome (IBS) that affects 10% - 20 % of the world population. Conventional pharmacological treatments to manage IBS-related visceral pain is unsatisfactory. Recently, medications have emerged to treat IBS patients by targeting the gastrointestinal (GI) tract and peripheral nerves to alleviate visceral pain while avoiding adverse effects on the central nervous system (CNS). Several investigational drugs for IBS also target the periphery with minimal CNS effects. Evidence of Acquisition In this paper, reputable internet databases from 1960 - 2016 were searched including Pubmed and ClinicalTrials.org, and 97 original articles analyzed. Search was performed based on the following keywords and combinations: irritable bowel syndrome, clinical trial, pain, visceral pain, narcotics, opioid, chloride channel, neuropathy, primary afferent, intestine, microbiota, gut barrier, inflammation, diarrhea, constipation, serotonin, visceral hypersensitivity, nociceptor, sensitization, hyperalgesia. Results Certain conventional pain managing drugs do not effectively improve IBS symptoms, including NSAIDs, acetaminophen, aspirin, and various narcotics. Anxiolytic and antidepressant drugs (Benzodiazepines, TCAs, SSRI and SNRI) can attenuate pain in IBS patients with relevant comorbidities. Clonidine, gabapentin and pregabalin can moderately improve IBS symptoms. Lubiprostone relieves constipation predominant IBS (IBS-C) while loperamide improves diarrhea predominant IBS (IBS-D). Alosetron, granisetron and ondansetron can generally treat pain in IBS-D patients, of which alosetron needs to be used with caution due to cardiovascular toxicity. The optimal drugs for managing pain in IBS-D and IBS-C appear to be eluxadoline and linaclotide, respectively, both of which target peripheral GI tract. Conclusions Conventional pain managing drugs are in general not suitable for treating IBS pain. Medications that target the GI tract and peripheral nerves have better therapeutic profiles by limiting adverse CNS effects.
Collapse
Affiliation(s)
- Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Sheikh J. Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Corresponding author: Bin Feng, Ph.D., Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT 06269-3247, USA. Tel: +1-8604866435, Fax: +1-8604862500, E-mail:
| |
Collapse
|
12
|
Opioid κ Receptors as a Molecular Target for the Creation of a New Generation of Analgesic Drugs. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1388-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Brust A, Croker DE, Colless B, Ragnarsson L, Andersson Å, Jain K, Garcia-Caraballo S, Castro J, Brierley SM, Alewood PF, Lewis RJ. Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. J Med Chem 2016; 59:2381-95. [PMID: 26859603 DOI: 10.1021/acs.jmedchem.5b00911] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioid receptor screening of a conopeptide library led to a novel selective κ-opioid agonist peptide (conorphin T). Intensive medicinal chemistry, guided by potency, selectivity, and stability assays generated a pharmacophore model supporting rational design of highly potent and selective κ-opioid receptor (KOR) agonists (conorphins) with exceptional plasma stability. Conorphins are defined by a hydrophobic benzoprolyl moiety, a double arginine sequence, a spacer amino acid followed by a hydrophobic residue and a C-terminal vicinal disulfide moiety. The pharmacophore model was supported by computational docking studies, revealing receptor-ligand interactions similar to KOR agonist dynorphin A (1-8). A conorphin agonist inhibited colonic nociceptors in a mouse tissue model of chronic visceral hypersensitivity, suggesting the potential of KOR agonists for the treatment of chronic abdominal pain. This new conorphine KOR agonist class and pharmacophore model provide opportunities for future rational drug development and probes for exploring the role of the κ-opioid receptor.
Collapse
Affiliation(s)
- Andreas Brust
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Daniel E Croker
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Barbara Colless
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Lotten Ragnarsson
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Åsa Andersson
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Kapil Jain
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Paul F Alewood
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Richard J Lewis
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| |
Collapse
|
14
|
Deiana S, Gabbani T, Bagnoli S, Annese V. Emerging drug for diarrhea predominant irritable bowel syndrome. Expert Opin Emerg Drugs 2015; 20:247-261. [PMID: 25732091 DOI: 10.1517/14728214.2015.1013935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders with a 9 - 23% prevalence estimated in the general population. Patients can be subdivided into those who tend to have predominant diarrhea (IBS-D) or predominant constipation (IBS-C). Total annual productivity loss related to IBS in US is estimated at $205 million, with a significant impairment of health-related quality of life. A gold standard for the treatment of IBS is not established. Symptoms might improve with the use of few drugs and behavioral therapy, however, data concerning efficacy, safety and tolerability are limited. Therefore, development and validation of new therapies targeting at the molecular level are widely awaited. AREAS COVERED We will specifically describe in this review Phase II and Phase III trials, with specific focus on treatment of IBS-D patients. Unfortunately, it is difficult to draw definite conclusions from Phase II and Phase III trials, because of the known high placebo effect. EXPERT OPINION Drugs active on opioid receptor subtypes and neurokinin (NK) receptors seem to be the most promising, but substantial progress of information in this field is still needed. The achievement of more insights on the pathogenesis of IBS could surely better drive and target the therapy, but still strong efforts are awaited.
Collapse
Affiliation(s)
- Simona Deiana
- Emergency Department, Gastroenterology SOD2, AOU Careggi , Florence , Italy +39 55 7946035 ;
| | | | | | | |
Collapse
|
15
|
Sasmal PK, Krishna CV, Adabala SS, Roshaiah M, Rawoof KA, Thadi E, Sukumar KP, Cheera S, Abbineni C, Rao KN, Prasanthi A, Nijhawan K, Jaleel M, Iyer LR, Chaitanya TK, Tiwari NK, Krishna NL, Potluri V, Khanna I, Frimurer TM, Lückmann M, Rist Ø, Elster L, Högberg T. Optimisation of in silico derived 2-aminobenzimidazole hits as unprecedented selective kappa opioid receptor agonists. Bioorg Med Chem Lett 2015; 25:887-92. [DOI: 10.1016/j.bmcl.2014.12.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022]
|
16
|
Mangel AW, Hicks GA. Asimadoline and its potential for the treatment of diarrhea-predominant irritable bowel syndrome: a review. Clin Exp Gastroenterol 2012; 5:1-10. [PMID: 22346361 PMCID: PMC3278196 DOI: 10.2147/ceg.s23274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a multifactorial condition with principal symptoms of pain and altered bowel function. The kappa-opioid agonist asimadoline is being evaluated in Phase III as a potential treatment for IBS. Asimadoline, to date, has shown a good safety profile and the target Phase III population - diarrhea-predominant IBS patients with at least moderate pain - was iteratively determined in a prospective manner from a Phase II dose-ranging study. The clinical data in support of this population are reviewed in this article. Furthermore, the scientific rationale for the use of asimadoline in the treatment of IBS is reviewed. Considering the high patient and societal burdens of IBS, new treatments for IBS represent therapeutic advances.
Collapse
|