1
|
Zhang D, Jiang M, Li P, Laster KV, Zhao D, Zhi Y, Wei H, Nie W, Gao Y, Wu Q, Xiang P, He X, Liu K, Dong Z. CHI-KAT8i5 suppresses ESCC tumor growth by inhibiting KAT8-mediated c-Myc stability. Cell Rep 2025; 44:115135. [PMID: 39772391 DOI: 10.1016/j.celrep.2024.115135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The integrated analysis of histone modifier enzymes in solid tumors, especially in esophageal squamous cell carcinoma (ESCC), is still inadequate. Here, we investigate the expression levels of histone modifier enzymes in ESCC tissues. Notably, KAT8 (lysine acetyltransferase 8) is identified as a prognostic and therapeutic biomarker in ESCC. Esophageal-tissue-specific deletion of KAT8 in mice led to less tumor burden after induction of tumorigenesis via 4-nitroquinoline N-oxide (4NQO) treatment compared with wild-type mice. Meanwhile, silencing KAT8 significantly suppresses tumor growth in cell-line-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Mechanically, we confirm that KAT8 regulates c-Myc protein stability by directly binding it. Furthermore, we design and screen a specific KAT8 inhibitor (CHI-KAT8i5) that significantly attenuates tumor growth in vitro and in vivo, providing promising potential for clinical application. Thus, our work identifies that KAT8 could serve as a potential clinically relevant biomarker and therapeutic target in patients with ESCC and that KAT8 inhibitor is a promising lead candidate for ESCC therapy.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Ming Jiang
- China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Dengyun Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Yafei Zhi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Huifang Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Yunfeng Gao
- China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Qiong Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Pu Xiang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450000 Henan, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450000 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000 Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450000 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000 Henan, China.
| |
Collapse
|
2
|
Liu Z, Yuan Y, Wang N, Yu P, Teng Y. Drug combinations of camptothecin derivatives promote the antitumor properties. Eur J Med Chem 2024; 279:116872. [PMID: 39298971 DOI: 10.1016/j.ejmech.2024.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Camptothecin (CPT) derivatives are widely used as small molecule chemotherapeutic agents and have demonstrated efficacy in the treatment of diverse solid tumors. A variety of derivatives have been developed to resolve the drawbacks of poor water solubility, high toxicity and rapid hydrolysis in vivo. However, the obstacles, such as acquired resistance and toxicity, still exist. The utilization of rational drug combinations has the potential to enhance the efficacy and mitigate the toxicity of CPT derivatives. This paper provides an overview of CPT derivatives in combination with other drugs, with a particular focus on cell cycle inhibitors, DNA synthesis inhibitors, anti-metastatic drugs and immunotherapy agents. Concurrently, the mechanisms of antitumor activity of combinations of different classes of drugs and CPT derivatives are elucidated. While the various combination strategies have yielded more favorable therapeutic outcomes, the efficacy and toxicity of the drug combinations are influenced by the inherent properties of the drugs involved. Moreover, a summary of the drug conjugates of CPT derivatives was provided, accompanied by an analysis of the structural activity relationship (SAR). This paves the way for the subsequent developments in drug combinations and delivery modes.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Yajie Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
3
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
4
|
Chen Z, Liu M, Wang N, Xiao W, Shi J. Unleashing the Potential of Camptothecin: Exploring Innovative Strategies for Structural Modification and Therapeutic Advancements. J Med Chem 2024; 67:3244-3273. [PMID: 38421819 DOI: 10.1021/acs.jmedchem.3c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Camptothecin (CPT) is a potent anti-cancer agent targeting topoisomerase I (TOP1). However, CPT has poor pharmacokinetic properties, causes toxicities, and leads to drug resistance, which limit its clinical use. In this paper, to review the current state of CPT research. We first briefly explain CPT's TOP1 inhibition mechanism and the key hurdles in CPT drug development. Then we examine strategies to overcome CPT's limitations through structural modifications and advanced delivery systems. Though modifications alone seem insufficient to fully enhance CPT's therapeutic potential, structure-activity relationship analysis provides insights to guide optimization of CPT analogs. In comparison, advanced delivery systems integrating controlled release, imaging capabilities, and combination therapies via stimulus-responsive linkers and targeting moieties show great promise for improving CPT's pharmacological profile. Looking forward, multifaceted approaches combining selective CPT derivatives with advanced delivery systems, informed by emerging biological insights, hold promise for fully unleashing CPT's anti-cancer potential.
Collapse
Affiliation(s)
- Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Maoyu Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu 610083, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Chen H, Wang Y, Shao C, Guo K, Liu G, Wang Z, Duan H, Pan M, Ding P, Zhang Y, Han J, Yan X. Molecular subgroup establishment and signature creation of lncRNAs associated with acetylation in lung adenocarcinoma. Aging (Albany NY) 2024; 16:1276-1297. [PMID: 38240708 PMCID: PMC10866443 DOI: 10.18632/aging.205407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/13/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND The significance of long non-coding RNAs (lncRNAs) as pivotal mediators of histone acetylation and their influential role in predicting the prognosis of lung adenocarcinoma (LUAD) has been increasingly recognized. However, there remains uncertainty regarding the potential utility of acetylation-related lncRNAs (ARLs) in prognosticating the overall survival (OS) of LUAD specimens. METHODS The RNA-Seq and clinical information were downloaded from The Cancer Genome Atlas (TCGA). Through the differential analysis, weighted correlation network analysis (WGCNA), Pearson correlation test and univariate Cox regression, we found out the prognosis associated ARLs and divided LUAD specimens into two molecular subclasses. The ARLs were employed to construct a unique signature through the implementation of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Subsequently, the predictive performance was evaluated using ROC analysis and Kaplan-Meier survival curve analysis. Finally, ARL expression in LUAD was confirmed by quantitative real-time PCR (qRT-PCR). RESULTS We triumphantly built a ARLs prognostic model with excellent predictive accuracy for LUAD. Univariate and multivariate Cox analysis illustrated that risk model served as an independent predictor for influencing the overall survival OS of LUAD. Furthermore, a nomogram exhibited strong prognostic validity. Additionally, variations were observed among subgroups in the field of immunity, biological functions, drug sensitivity and gene mutations within the field. CONCLUSIONS Nine ARLs were identified as promising indicators of personalized prognosis and drug selection for people suffering with LUAD.
Collapse
Affiliation(s)
- Hao Chen
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Kai Guo
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| |
Collapse
|
6
|
Lu Y, Xiao Y, Liu LF, Xiao XL, Liao LF, Nie CM. Theoretical probing into complexation of Si-5LIO-1-Cm-3,2-HOPO with Uranyl. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models. Cell Death Dis 2021; 7:127. [PMID: 34059622 PMCID: PMC8165351 DOI: 10.1038/s41420-021-00510-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Essential oils (EOs) have been recently emerging for their promising biological activities in preventing tumorigenesis or progression of different tumor histotypes, including melanoma. In this study, we investigated the antitumor activity of a panel of EOs in different tumor models. The ability of Melaleuca alternifolia (tea tree oil) and its main component, terpinen-4-ol, to sensitize the target therapy currently used for melanoma treatment was also assessed. Our results demonstrated that EOs differently affect the viability of human cancer cells and led us to select six EOs effective in melanoma and lung cancer cells, without toxic effects in human fibroblasts. When combined with dabrafenib and/or trametinib, Melaleuca alternifolia synergistically reduced the viability of melanoma cells by activating apoptosis. Through machine learning classification modeling, α-terpineol, tepinolene, and terpinen-4-ol, three components of Melaleuca alternifolia, were identified as the most likely relevant components responsible for the EO's antitumor effect. Among them, terpinen-4-ol was recognized as the Melaleuca alternifolia component responsible for its antitumor and proapoptotic activity. Overall, our study holds promise for further analysis of EOs as new anticancer agents and supports the rationale for their use to improve target therapy response in melanoma.
Collapse
|
8
|
Man RJ, Jeelani N, Zhou C, Yang YS. Recent Progress in the Development of Quinoline Derivatives for the Exploitation of Anti-Cancer Agents. Anticancer Agents Med Chem 2021; 21:825-838. [PMID: 32416703 DOI: 10.2174/1871520620666200516150345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Along with the progress in medicine and therapies, the exploitation of anti-cancer agents focused more on the vital signaling pathways and key biological macromolecules. With rational design and advanced synthesis, quinoline derivatives have been utilized frequently in medicinal chemistry, especially in developing anti-cancer drugs or candidates. METHODS Using DOI searching, articles published before 2020 all over the world have been reviewed as comprehensively as possible. RESULTS In this review, we selected the representative quinoline derivate drugs in market or clinical trials, classified them into five major categories with detailed targets according to their main mechanisms, discussed the relationship within the same mechanism, and generated a summative discussion with prospective expectations. For each mechanism, the introduction of the target was presented, with the typical examples of quinoline derivate drugs. CONCLUSION This review has highlighted the quinoline drugs or candidates, suited them into corresponding targets in their pathways, summarized and discussed. We hope that this review may help the researchers who are interested in discovering quinoline derivate anti-cancer agents obtain considerable understanding of this specific topic. Through the flourishing period and the vigorous strategies in clinical trials, quinoline drugs would be potential but facing new challenges in the future.
Collapse
Affiliation(s)
- Ruo-Jun Man
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Nasreen Jeelani
- Institute of Chemistry and BioMedical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chongchen Zhou
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yu-Shun Yang
- Institute of Chemistry and BioMedical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Cincinelli R, Musso L, Artali R, Guglielmi MB, La Porta I, Melito C, Colelli F, Cardile F, Signorino G, Fucci A, Frusciante M, Pisano C, Dallavalle S. Hybrid topoisomerase I and HDAC inhibitors as dual action anticancer agents. PLoS One 2018; 13:e0205018. [PMID: 30300374 PMCID: PMC6177136 DOI: 10.1371/journal.pone.0205018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
Recent studies have shown that HDAC inhibitors act synergistically with camptothecin derivatives in combination therapies. To exploit this synergy, new hybrid molecules targeting simultaneously topoisomerase I and HDAC were designed. In particular, a selected multivalent agent containing a camptothecin and a SAHA-like template showed a broad spectrum of antiproliferative activity, with IC50 values in the nanomolar range. Preliminary in vivo results indicated a strong antitumor activity on human mesothelioma primary cell line MM473 orthotopically xenografted in CD-1 nude mice and very high tolerability.
Collapse
Affiliation(s)
- Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | - Carmela Melito
- Biogem, Research Institute, Ariano Irpino, Avellino, Italy
| | | | | | | | | | | | - Claudio Pisano
- Biogem, Research Institute, Ariano Irpino, Avellino, Italy
- * E-mail: (SD); (CP)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
- * E-mail: (SD); (CP)
| |
Collapse
|
10
|
Wahner Hendrickson AE, Menefee ME, Hartmann LC, Long HJ, Northfelt DW, Reid JM, Boakye-Agyeman F, Kayode O, Flatten KS, Harrell MI, Swisher EM, Poirier GG, Satele D, Allred J, Lensing JL, Chen A, Ji J, Zang Y, Erlichman C, Haluska P, Kaufmann SH. A Phase I Clinical Trial of the Poly(ADP-ribose) Polymerase Inhibitor Veliparib and Weekly Topotecan in Patients with Solid Tumors. Clin Cancer Res 2018; 24:744-752. [PMID: 29138343 PMCID: PMC7580251 DOI: 10.1158/1078-0432.ccr-17-1590] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/03/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022]
Abstract
Purpose: To determine the dose limiting toxicities (DLT), maximum tolerated dose (MTD), and recommended phase II dose (RP2D) of veliparib in combination with weekly topotecan in patients with solid tumors. Correlative studies were included to assess the impact of topotecan and veliparib on poly(ADP-ribose) levels in peripheral blood mononuclear cells, serum pharmacokinetics of both agents, and potential association of germline repair gene mutations with outcome.Experimental Design: Eligible patients had metastatic nonhematologic malignancies with measurable disease. Using a 3 + 3 design, patients were treated with veliparib orally twice daily on days 1-3, 8-10, and 15-17 and topotecan intravenously on days 2, 9, and 16 every 28 days. Tumor responses were assessed by RECIST.Results: Of 58 patients enrolled, 51 were evaluable for the primary endpoint. The MTD and RP2D was veliparib 300 mg twice daily on days 1-3, 8-10, and 15-17 along with topotecan 3 mg/m2 on days 2, 9, and 16 of a 28-day cycle. DLTs were grade 4 neutropenia lasting >5 days. The median number of cycles was 2 (1-26). The objective response rate was 10%, with 1 complete and 4 partial responses. Twenty-two patients (42%) had stable disease ranging from 4 to 26 cycles. Patients with germline BRCA1, BRCA2, or RAD51D mutations remained on study longer than those without homologous recombination repair (HRR) gene mutations (median 4 vs. 2 cycles).Conclusions: Weekly topotecan in combination with veliparib has a manageable safety profile and appears to warrant further investigation. Clin Cancer Res; 24(4); 744-52. ©2017 AACR.
Collapse
|
11
|
Lazareva NF, Baryshok VP, Lazarev IM. Silicon-containing analogs of camptothecin as anticancer agents. Arch Pharm (Weinheim) 2017; 351. [PMID: 29239010 DOI: 10.1002/ardp.201700297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
The plant pentacyclic alkaloid camptothecin and its structural analogs were extensively studied. These compounds are interesting due to the antitumor activity associated with their ability to inhibit topoisomerase I in tumor cells. During the last decades of the 20th century, a large number of the silicon-containing camptothecins (silatecans) were synthesized. 7-tert-Butyldimethylsilyl-10-hydroxy-camptothecin (DB-67 or AR-67) has enhanced lipophilicity and demonstrates a antitumor activity superior to its carbon analog. To date, certain silatecans are under clinical trials and their ultimate role in cancer therapy appears promising. In this review, we present chemical methodologies for the synthesis of silicon-containing camptothecins, their chemical properties, biological activity, and results of clinical trials.
Collapse
Affiliation(s)
- Nataliya F Lazareva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Viktor P Baryshok
- Irkutsk National Research Technical University, Irkutsk, Russian Federation
| | - Igor M Lazarev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| |
Collapse
|
12
|
Musiol R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin Drug Discov 2017; 12:583-597. [DOI: 10.1080/17460441.2017.1319357] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Singh S, Awasthi M, Pandey VP, Dwivedi UN. Plant derived anti-cancerous secondary metabolites as multipronged inhibitor of COX, Topo, and aromatase: molecular modeling and dynamics simulation analyses. J Biomol Struct Dyn 2016; 35:3082-3097. [DOI: 10.1080/07391102.2016.1241720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Swati Singh
- Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Manika Awasthi
- Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Veda P. Pandey
- Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Upendra N. Dwivedi
- Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
14
|
|
15
|
Patel AG, Flatten KS, Peterson KL, Beito TG, Schneider PA, Perkins AL, Harki DA, Kaufmann SH. Immunodetection of human topoisomerase I-DNA covalent complexes. Nucleic Acids Res 2016; 44:2816-26. [PMID: 26917015 PMCID: PMC4824114 DOI: 10.1093/nar/gkw109] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15-30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo.
Collapse
Affiliation(s)
- Anand G Patel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas G Beito
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela L Perkins
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Udomsom N, Rai A, Suzuki H, Okuyama J, Imai R, Mori T, Nakabayashi R, Saito K, Yamazaki M. Function of AP2/ERF Transcription Factors Involved in the Regulation of Specialized Metabolism in Ophiorrhiza pumila Revealed by Transcriptomics and Metabolomics. FRONTIERS IN PLANT SCIENCE 2016; 7:1861. [PMID: 28018397 PMCID: PMC5145908 DOI: 10.3389/fpls.2016.01861] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/25/2016] [Indexed: 05/20/2023]
Abstract
The hairy roots (HR) of Ophiorrhiza pumila produce camptothecin (CPT), a monoterpenoid indole alkaloid used as a precursor in the synthesis of chemotherapeutic drugs. O. pumila HR culture is considered as a promising alternative source of CPT, however, the knowledge about the biosynthetic pathway and regulatory mechanism is still limited. In this study, five genes that encode AP2/ERF transcription factors, namely OpERF1-OpERF5, were isolated from HR of O. pumila. Phylogenetic analysis of AP2/ERF protein sequences suggested the close evolutionary relationship of OpERF1 with stress-responsive ERF factors in Arabidopsis and of OpERF2 with ERF factors reported to regulate alkaloid production, such as ORCA3 in Catharanthus roseus, NIC2 locus ERF in tobacco, and JRE4 in tomato. We generated the transgenic HR lines of O. pumila, ERF1i and ERF2i, in which the expression of OpERF1 and OpERF2, respectively, was suppressed using RNA interference technique. The transcriptome and metabolome of these suppressed HR were analyzed for functional characterization of OpERF1 and OpERF2. Although significant changes were not observed in the metabolome, including CPT and related compounds, the suppression of OpERF2 resulted in reduced expression of genes in the 2-C-methyl-d-erythritol 4-phosphate and secologanin-strictosidine pathways, which supply a precursor, strictosidine, for CPT biosynthesis. Furthermore, while it was not conclusive for OpERF1, enrichment analysis of differentially expressed genes in the suppressed HR showed that the gene ontology terms for oxidation-reduction, presumably involved in secondary metabolite pathways, were enriched in the ERF2i downregulated gene set. These results suggest a positive role of OpERF2 in regulating specialized metabolism in O. pumila.
Collapse
Affiliation(s)
- Nirin Udomsom
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Amit Rai
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research InstituteChiba, Japan
| | - Jun Okuyama
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Ryosuke Imai
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource ScienceKanagawa, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource ScienceKanagawa, Japan
| | - Kazuki Saito
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- RIKEN Center for Sustainable Resource ScienceKanagawa, Japan
| | - Mami Yamazaki
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Mami Yamazaki
| |
Collapse
|
17
|
Singh S, Das T, Awasthi M, Pandey VP, Pandey B, Dwivedi UN. DNA topoisomerase-directed anticancerous alkaloids: ADMET-based screening, molecular docking, and dynamics simulation. Biotechnol Appl Biochem 2015; 63:125-37. [DOI: 10.1002/bab.1346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 01/13/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Swati Singh
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
- Amity Institute of Biotechnology; Amity University; Lucknow Uttar Pradesh India
| | - Tamal Das
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
| | - Manika Awasthi
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
| | - Veda P. Pandey
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
| | - Brijesh Pandey
- Amity Institute of Biotechnology; Amity University; Lucknow Uttar Pradesh India
| | - Upendra N. Dwivedi
- Department of Biochemistry, Bioinformatics Infrastructure Facility; Center of Excellence in Bioinformatics; University of Lucknow; Lucknow Uttar Pradesh India
| |
Collapse
|
18
|
Molecular dynamics simulated validation of anti-cancerous alkaloids as Topo IIβ inhibitors screened by QSAR, pharmacophore and molecular docking approaches. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Xu P, Chen DS, Xi J, Yao ZJ. Short Protecting Group-free Syntheses of Camptothecin and 10-Hydroxycamptothecin Using Cascade Methodologies. Chem Asian J 2014; 10:976-81. [DOI: 10.1002/asia.201403190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 11/06/2022]
|
20
|
Butler MS, Robertson AAB, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 2014; 31:1612-61. [DOI: 10.1039/c4np00064a] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 25 Natural Product (NP)-derived drugs launched since 2008 and the 100 NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) in clinical trials or in registration at the end of 2013 are reviewed.
Collapse
Affiliation(s)
- Mark S. Butler
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Avril A. B. Robertson
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
21
|
Myeloprotection by cytidine deaminase gene transfer in antileukemic therapy. Neoplasia 2013; 15:239-48. [PMID: 23479503 DOI: 10.1593/neo.121954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Gene transfer of drug resistance (CTX-R) genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O(6)-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C), gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD) represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine) in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.
Collapse
|
22
|
Huang Q, Wang L, Lu W. Evolution in medicinal chemistry of E-ring-modified Camptothecin analogs as anticancer agents. Eur J Med Chem 2013; 63:746-57. [DOI: 10.1016/j.ejmech.2013.01.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 12/24/2022]
|
23
|
Fujii S, Miyajima Y, Masuno H, Kagechika H. Increased Hydrophobicity and Estrogenic Activity of Simple Phenols with Silicon and Germanium-Containing Substituents. J Med Chem 2012; 56:160-6. [DOI: 10.1021/jm3013757] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shinya Fujii
- Institute of Biomaterials
and Bioengineering, Tokyo
Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku,
Tokyo 101-0062, Japan
| | - Yu Miyajima
- Institute of Biomaterials
and Bioengineering, Tokyo
Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku,
Tokyo 101-0062, Japan
| | - Hiroyuki Masuno
- Institute of Biomaterials
and Bioengineering, Tokyo
Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku,
Tokyo 101-0062, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials
and Bioengineering, Tokyo
Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku,
Tokyo 101-0062, Japan
| |
Collapse
|
24
|
New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 2012; 6:637-56. [PMID: 23141799 DOI: 10.1016/j.molonc.2012.09.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/30/2012] [Indexed: 12/19/2022] Open
Abstract
Abnormal epigenetic control is a common early event in tumour progression, and aberrant acetylation in particular has been implicated in tumourigenesis. One of the most promising approaches towards drugs that modulate epigenetic processes has been seen in the development of inhibitors of histone deacetylases (HDACs). HDACs regulate the acetylation of histones in nucleosomes, which mediates changes in chromatin conformation, leading to regulation of gene expression. HDACs also regulate the acetylation status of a variety of other non-histone substrates, including key tumour suppressor proteins and oncogenes. Histone deacetylase inhibitors (HDIs) are potent anti-proliferative agents which modulate acetylation by targeting histone deacetylases. Interest is increasing in HDI-based therapies and so far, two HDIs, vorinostat (SAHA) and romidepsin (FK228), have been approved for treating cutaneous T-cell lymphoma (CTCL). Others are undergoing clinical trials. Treatment with HDIs prompts tumour cells to undergo apoptosis, and cell-based studies have shown a number of other outcomes to result from HDI treatment, including cell-cycle arrest, cell differentiation, anti-angiogenesis and autophagy. However, our understanding of the key pathways through which HDAC inhibitors affect tumour cell growth remains incomplete, which has hampered progress in identifying malignancies other than CTCL which are likely to respond to HDI treatment.
Collapse
Affiliation(s)
- Maria New
- Department of Oncology, Laboratory of Cancer Biology, University of Oxford, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|