1
|
Doraneh-Gard F, Amberger DC, Amend C, Weinmann M, Schwepcke C, Klauer L, Schutti O, Hosseini H, Krämer D, Rank A, Schmid C, Schmetzer HM. Anti-Leukemic Effects Induced by Dendritic Cells of Leukemic Origin from Leukemic Blood Samples Are Comparable under Hypoxic vs. Normoxic Conditions. Cancers (Basel) 2024; 16:2383. [PMID: 39001445 PMCID: PMC11240788 DOI: 10.3390/cancers16132383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Hypoxia can modulate the immune system by affecting the function and activity of immune cells, potentially leading to altered immune responses. This study investigated the generation of leukemia-derived dendritic cells (DCleu) from leukemic blasts and their impact on immune cell activation under hypoxic (5-10% O2) compared to normoxic (21% O2) conditions using various immunomodulatory Kits. The results revealed that DC/DCleu-generation was similar under hypoxic and normoxic conditions, with no significant differences observed in frequencies of generated DC/DCleu. Furthermore, the study showed that the activation of immune cells and their anti-leukemic activity improved when T cell-enriched immunoreactive cells were co-cultured with DC/DCleu which were generated with Kit I and M compared to the control after mixed lymphocyte cultures. The anti-leukemic activity was improved under hypoxic compared to normoxic conditions after MLCWB-DC Kit M. These findings suggest that DC/DCleu-cultures of leukemic whole blood with Kits under hypoxic conditions yield comparable frequencies of DC/DCleu and can even increase the anti-leukemic activity compared to normoxic conditions. Overall, this research highlights the potential of utilizing DC/DCleu (potentially induced in vivo with Kits) as a promising approach to enhance immune response in patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Fatemeh Doraneh-Gard
- Medical Department III, Working-group Immune-Modulation, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | | | - Carina Amend
- Medical Department III, Working-group Immune-Modulation, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Melanie Weinmann
- Medical Department III, Working-group Immune-Modulation, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Christoph Schwepcke
- Medical Department III, Working-group Immune-Modulation, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Lara Klauer
- Medical Department III, Working-group Immune-Modulation, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Olga Schutti
- Medical Department III, Working-group Immune-Modulation, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Hedayatollah Hosseini
- Experimental Medicine and Therapy Research Department, Faculty of Medicine, University of Regensburg, 93040 Regensburg, Germany
| | - Doris Krämer
- Department of Hematology, Oncology and Palliative Care, Hospital Hagen, 58097 Hagen, Germany
| | - Andreas Rank
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
- Department of Hematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Christoph Schmid
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
- Department of Hematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Helga Maria Schmetzer
- Medical Department III, Working-group Immune-Modulation, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| |
Collapse
|
2
|
Niktoreh N, Weber L, Walter C, Karimifard M, Hoffmeister LM, Breiter H, Thivakaran A, Soldierer M, Drexler HG, Schaal H, Sendker S, Reinhardt D, Schneider M, Hanenberg H. Understanding WT1 Alterations and Expression Profiles in Hematological Malignancies. Cancers (Basel) 2023; 15:3491. [PMID: 37444601 DOI: 10.3390/cancers15133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
WT1 is a true chameleon, both acting as an oncogene and tumor suppressor. As its exact role in leukemogenesis is still ambiguous, research with model systems representing natural conditions surrounding the genetic alterations in WT1 is necessary. In a cohort of 59 leukemia/lymphoma cell lines, we showed aberrant expression for WT1 mRNA, which does not always translate into protein levels. We also analyzed the expression pattern of the four major WT1 protein isoforms in the cell lines and primary AML blasts with/without WT1 mutations and demonstrated that the presence of mutations does not influence these patterns. By introduction of key intronic and exonic sequences of WT1 into a lentiviral expression vector, we developed a unique tool that can stably overexpress the four WT1 isoforms at their naturally occurring tissue-dependent ratio. To develop better cellular model systems for WT1, we sequenced large parts of its gene locus and also other important myeloid risk factor genes and revealed previously unknown alterations. Functionally, inhibition of the nonsense-mediated mRNA decay machinery revealed that under natural conditions, the mutated WT1 alleles go through a robust degradation. These results offer new insights and model systems regarding the characteristics of WT1 in leukemia and lymphoma.
Collapse
Affiliation(s)
- Naghmeh Niktoreh
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lisa Weber
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christiane Walter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Mahshad Karimifard
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lina Marie Hoffmeister
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hannah Breiter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aniththa Thivakaran
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Maren Soldierer
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hans Günther Drexler
- Faculty of Life Sciences, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Stephanie Sendker
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Markus Schneider
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Shikonin as a WT1 Inhibitor Promotes Promyeloid Leukemia Cell Differentiation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238264. [PMID: 36500358 PMCID: PMC9735585 DOI: 10.3390/molecules27238264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
This study aims to observe the differentiating effect of shikonin on Wilms' tumor 1 (WT1)-positive HL-60 cells and investigate the fate of the differentiated leukemia cells. WT1 overexpression unaffected cell viability but promoted resistance to H2O2-induced DNA injury and cell apoptosis. The binding of shikonin to the WT1 protein was confirmed by molecular docking and drug affinity reaction target stability (DARTS). Shikonin at the non-cytotoxic concentration could decrease the WT1 protein and simultaneously reduced the CD34 protein and increased the CD11b protein in a dose-dependent manner in normal HL-60 cells but not in WT1-overexpressed HL-60 cells. Shikonin unaffected HL-60 cell viability in 48 h. However, it lasted for 10 days; could attenuate cell proliferation, mitochondrial membrane potential (MMP), and self-renewal; prevent the cell cycle; promote cell apoptosis. In a mouse leukemia model, shikonin could decrease the WT1 protein to prevent leukemia development in a dose-dependent manner. In this study, we also confirmed preliminarily the protein-protein interactions between WT1 and CD34 in molecular docking and CO-IP assay. Our results suggest that: 1. shikonin can down-regulate the WT1 protein level for leukemia differentiation therapy, and 2. the interaction between WT1 and CD34 proteins may be responsible for granulocyte/monocyte immaturity in HL-60 cells.
Collapse
|
4
|
Vitkevičienė A, Skliutė G, Žučenka A, Borutinskaitė V, Navakauskienė R. Potential Prognostic Markers for Relapsed/Refractory vs. Responsive Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14112752. [PMID: 35681732 PMCID: PMC9179343 DOI: 10.3390/cancers14112752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most common blood cancer in the elderly, which progresses rapidly and is often fatal. The prognosis for AML remains poor in most older patients: only about 15% of patients over 60 years of age can recover. Our aim is to determine new potential AML clinical treatment prognosis markers. We analyzed certain genes, proteins and the epigenome profile in therapy-resistant and responsive AML patients at diagnosis stage and after clinical treatment. We determined that MYC, WT1, IDH1, CDKN1A, HDAC2, TET1, KAT6A and GATAD2A gene expression changes might characterize refractory AML. Therefore, these genes could have an impact for AML prognosis. Abstract Acute myeloid leukemia (AML) is a heterogeneous disease. A significant proportion of AML patients is refractory to clinical treatment or relapses. Our aim is to determine new potential AML clinical treatment prognosis markers. We investigated various cell fate and epigenetic regulation important gene level differences between refractory and responsive AML patient groups at diagnosis stage and after clinical treatment using RT-qPCR. We demonstrated that oncogenic MYC and WT1 and metabolic IDH1 gene expression was significantly higher and cell cycle inhibitor CDKN1A (p21) gene expression was significantly lower in refractory patients’ bone marrow cells compared to treatment responsive patients both at diagnosis and after clinical treatment. Moreover, we determined that, compared to clinical treatment responsive patients, refractory patients possess a significantly higher gene expression of histone deacetylase 2 (HDAC2) and epigenetic DNA modulator TET1 and a significantly lower gene expression of lysine acetyltransferase 6A (KAT6A) and nucleosome remodeling and deacetylase (NuRD) complex component GATAD2A. We suggest that MYC, WT1, IDH1, CDKN1A, HDAC2, TET1, KAT6A and GATAD2A gene expression changes might characterize refractory AML. Thus, they might be useful for AML prognosis. Additionally, we suggest that epigenetic modulation might be beneficial in combination with standard treatment.
Collapse
Affiliation(s)
- Aida Vitkevičienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania; (A.V.); (G.S.); (V.B.)
| | - Giedrė Skliutė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania; (A.V.); (G.S.); (V.B.)
| | - Andrius Žučenka
- Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Santariskiu str. 2, LT-08661 Vilnius, Lithuania;
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania; (A.V.); (G.S.); (V.B.)
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania; (A.V.); (G.S.); (V.B.)
- Correspondence: ; Tel.: +370-5-223-4409
| |
Collapse
|
5
|
Acquired WT1 mutations contribute to relapse of NPM1-mutated acute myeloid leukemia following allogeneic hematopoietic stem cell transplant. Bone Marrow Transplant 2022; 57:370-376. [PMID: 34992253 DOI: 10.1038/s41409-021-01538-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022]
Abstract
The role of WT1 protein in hematopoiesis and leukemogenesisis incompletely elucidated. WT1 overexpression is common in acute myeloid leukemia (AML); however, WT1 mutations occur in only about 10% of cases, with increasing incidence in the setting of relapse. In this study, we investigated the clinical and molecular characteristics of WT1 mutations in NPM1-mutated AML, to enhance our understanding of the biology and potential therapeutic implications of WT1 mutations. Our study cohort included 67 patients with NPM1 mutated AML and a median follow-up of 13.7 months. WT1 mutations were identified in 7% (n = 5) of patients at the time of initial diagnosis. WT1 mutant clones were presumed to be present as co-dominant clones in 3/5 and in subclonal populations in 2/5 cases based on variant allelic frequency (VAF) when compared with NPM1 mutation VAF. All WT1 mutations became undetectable at time of MRD-negative (NPM1-wild type) remission. None of these patients experienced relapse at the time of last follow-up (median, 15 months; range, 4.5-20.2 months). A total of 15/67 (22%) patients relapsed; among these patient, four (27%) relapsed with WT1 mutant AML. Three of four patients had undergone allogeneic hematopoietic stem cell transplantation (HSCT). None of these patients had detectable WT1 mutations at the time of initial diagnosis. WT1 mutations were presumed clonal in two cases and subclonal in the other two cases, based on VAF. Our results indicate that WT1 mutations contribute to relapse in NPM1 mutated AML, especially in the setting of HSCT. These findings suggest that emerging WT1 mutations may serve as a conduit for relapse in NPM1-mutated AML, and that sequential molecular profiling to evaluate potential emergent WT1 mutations during surveillance and particularly at relapse likely has prognostic value in patients with NPM1 mutated AML.
Collapse
|
6
|
Amberger DC, Doraneh-Gard F, Gunsilius C, Weinmann M, Möbius S, Kugler C, Rogers N, Böck C, Ködel U, Werner JO, Krämer D, Eiz-Vesper B, Rank A, Schmid C, Schmetzer HM. PGE 1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood. Int J Mol Sci 2019; 20:ijms20184590. [PMID: 31533251 PMCID: PMC6769744 DOI: 10.3390/ijms20184590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) and leukemia-derived DC (DCleu) are potent stimulators of various immunoreactive cells and they play a pivotal role in the (re-) activation of the immune system. As a potential treatment tool for patients with acute myeloid leukemia, we developed and analyzed two new PGE1-containing protocols (Pici-PGE1, Kit M) to generate DC/DCleu ex vivo from leukemic peripheral blood mononuclear cells (PBMCs) or directly from leukemic whole blood (WB) to simulate physiological conditions. Pici-PGE1 generated significantly higher amounts of DCs from leukemic and healthy PBMCs when compared to control and comparable amounts as the already established protocol Pici-PGE2. The proportions of sufficient DC-generation were even higher after DC/DCleu-generation with Pici-PGE1. With Kits, it was possible to generate DCs and DCleu directly from leukemic and healthy WB without induction of blast proliferation. The average amounts of generated DCs and DCleu-subgroups were comparable with all Kits. The PGE1 containing Kit M generated significantly higher amounts of mature DCs when compared to the PGE2-containing Kit K and increased the anti-leukemic-activity. In summary PGE1-containing protocols were suitable for generating DC/DCleu from PBMCs as well as from WB, which reliably (re-) activated immunoreactive cells, improved the overall ex vivo anti-leukemic activity, and influenced cytokine-release-profiles.
Collapse
Affiliation(s)
- Daniel Christoph Amberger
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Fatemeh Doraneh-Gard
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Carina Gunsilius
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Melanie Weinmann
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Sabine Möbius
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Christoph Kugler
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Nicole Rogers
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Corinna Böck
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Uwe Ködel
- Department of Neurology, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Jan-Ole Werner
- Department of Hematology and Oncology, University Hospital of Tuebingen, 72076 Tuebingen, Germany.
| | - Doris Krämer
- Department for Hematology and Oncology, University Hospital of Oldenburg, 26133 Oldenburg, Germany.
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
| | - Andreas Rank
- Department of Hematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany.
| | - Christoph Schmid
- Department of Hematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany.
| | - Helga Maria Schmetzer
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| |
Collapse
|
7
|
Mutated WT1, FLT3-ITD, and NUP98-NSD1 Fusion in Various Combinations Define a Poor Prognostic Group in Pediatric Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2019; 2019:1609128. [PMID: 31467532 PMCID: PMC6699323 DOI: 10.1155/2019/1609128] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is a life-threatening malignancy in children and adolescents treated predominantly by risk-adapted intensive chemotherapy that is partly supported by allogeneic stem cell transplantation. Mutations in the WT1 gene and NUP98-NSD1 fusion are predictors of poor survival outcome/prognosis that frequently occur in combination with internal tandem duplications of the juxta-membrane domain of FLT3 (FLT3-ITD). To re-evaluate the effect of these factors in contemporary protocols, 353 patients (<18 years) treated in Germany with AML-BFM treatment protocols between 2004 and 2017 were included. Presence of mutated WT1 and FLT3-ITD in blasts (n=19) resulted in low 3-year event-free survival of 29% and overall survival of 33% compared to rates of 45-63% and 67-87% in patients with only one (only FLT3-ITD; n=33, only WT1 mutation; n=29) or none of these mutations (n=272). Including NUP98-NSD1 and high allelic ratio (AR) of FLT3-ITD (AR ≥0.4) in the analysis revealed very poor outcomes for patients with co-occurrence of all three factors or any of double combinations. All these patients (n=15) experienced events and the probability of overall survival was low (27%). We conclude that co-occurrence of WT1 mutation, NUP98-NSD1, and FLT3-ITD with an AR ≥0.4 as triple or double mutations still predicts dismal response to contemporary first- and second-line treatment for pediatric acute myeloid leukemia.
Collapse
|
8
|
Ullmark T, Järvstråt L, Sandén C, Montano G, Jernmark-Nilsson H, Lilljebjörn H, Lennartsson A, Fioretos T, Drott K, Vidovic K, Nilsson B, Gullberg U. Distinct global binding patterns of the Wilms tumor gene 1 (WT1) -KTS and +KTS isoforms in leukemic cells. Haematologica 2016; 102:336-345. [PMID: 27612989 DOI: 10.3324/haematol.2016.149815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/05/2016] [Indexed: 12/29/2022] Open
Abstract
The zinc finger transcription factor Wilms tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (±KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of the WT1 -KTS isoform at the expense of the WT1 +KTS isoform is associated with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 -KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing. We discovered that the WT1 -KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is enriched within gene bodies. We observed a significant overlap between WT1 -KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 -KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 -KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with the involvement of WT1 in acute myeloid leukemia.
Collapse
Affiliation(s)
- Tove Ullmark
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Linnea Järvstråt
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Carl Sandén
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Giorgia Montano
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Helena Jernmark-Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Kristina Drott
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Karina Vidovic
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Urban Gullberg
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| |
Collapse
|
9
|
Buckley SA, Walter RB. Update on antigen-specific immunotherapy of acute myeloid leukemia. Curr Hematol Malig Rep 2016; 10:65-75. [PMID: 25896530 DOI: 10.1007/s11899-015-0250-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among the few drugs that have shown a benefit for patients with acute myeloid leukemia (AML) in randomized clinical trials over the last several decades is the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO). Undoubtedly, this experience has highlighted the value of antigen-specific immunotherapy in AML. A wide variety of therapeutics directed against several different antigens on AML cells are currently explored in preclinical and early clinical studies. On the one hand, these include passive strategies such as unconjugated antibodies targeting one or more antigens, antibodies armed with drugs, toxic proteins, or radionuclides, or adoptive immunotherapies, in particular utilizing T cells engineered to express chimeric antigen receptors (CARs) or modified T cell receptor (TCR) genes; on the other hand, these include active strategies such as vaccinations. With the documented benefit for GO and the emerging data with several classes of therapeutics in other leukemias, in particular small bispecific antibodies and CAR T cells, the future is bright. Nevertheless, a number of important questions related to the choice of target antigen(s), patient population, exact treatment modality, and supportive care needs remain open. Addressing such questions in upcoming studies will ultimately be required to optimize the clinical use of antigen-specific immunotherapies in AML and ensure that such treatments become an effective, versatile tool for this disease for which the outcomes have remained unsatisfactory in many patients.
Collapse
Affiliation(s)
- Sarah A Buckley
- Hematology/Oncology Fellowship Program, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
10
|
Abstract
The Wilms' tumor suppressor gene 1 (Wt1) is critically involved in a number of developmental processes in vertebrates, including cell differentiation, control of the epithelial/mesenchymal phenotype, proliferation, and apoptosis. Wt1 proteins act as transcriptional and post-transcriptional regulators, in mRNA splicing and in protein-protein interactions. Furthermore, Wt1 is involved in adult tissue homeostasis, kidney function, and cancer. For these reasons, Wt1 function has been extensively studied in a number of animal models to establish its spatiotemporal expression pattern and the developmental fate of the cells expressing this gene. In this chapter, we review the developmental anatomy of Wt1, collecting information about its dynamic expression in mesothelium, kidney, gonads, cardiovascular system, spleen, nervous system, lung, and liver. We also describe the adult expression of Wt1 in kidney podocytes, gonads, mesothelia, visceral adipose tissue, and a small fraction of bone marrow cells. We have reviewed the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing, based on constitutive or inducible Cre recombinase expression under control of a Wt1 promoter. Finally we provide a number of laboratory protocols to be used with these animal models in order to assess reporter expression.
Collapse
|
11
|
Yi-Ning Y, Xiao-rui W, Chu-xian Z, Chun W, You-wen Q. Prognostic significance of diagnosed WT1 level in acute myeloid leukemia: a meta-analysis. Ann Hematol 2015; 94:929-38. [PMID: 25572170 DOI: 10.1007/s00277-014-2295-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
Abstract
The Wilms' tumor 1 (WT1) expression has been recognized in a substantial number of acute myeloid leukemia (AML) patients. Some studies indicated the association of diagnosed WT1 higher expression (WT1(H)) and poor outcome in the AML patients, while other studies had different opinions. Therefore, we performed a meta-analysis to evaluate the controversial prognostic significance of diagnosed WT1(H) in AML. Eligible studies were identified from several databases including PubMed, Embase, Web of Science, and the Cochrane Library (up to September 2014). The primary end point was overall survival (OS) and disease-free survival (DFS) was chosen as secondary end point. If possible, we would pool estimate effects (hazard ratio [HR] with 95 % confidence interval [CI]) of outcomes in both fixed and random effects models. Eleven studies, covering 1497 AML patients, were included in this meta-analysis. Pooled HRs indicated that diagnosed WT1(H) had a poor impact on the survival of AML patients (HR for OS, 1.37; HR for DFS, 1.38). Furthermore, diagnosed WT1(H) appeared to be an adverse prognostic indicator in adult AML (HR for OS, 1.43; HR for DFS, 1.41) and non-promyelocytic AML (non-M3 AML) (HR for OS, 1.46; HR for DFS, 1.41). Diagnosed WT1(H) had slightly but significantly poor prognostic impact on OS and DFS of patients with AML in total population and some specific subgroups.
Collapse
Affiliation(s)
- Yang Yi-Ning
- Department of Hematology, Shanghai JiaoTong University Affiliated Shanghai General Hospital, No. 100 Haining Rd., Shanghai, 200080, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Buckley SA, Walter RB. Antigen-specific immunotherapies for acute myeloid leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:584-595. [PMID: 26637776 DOI: 10.1182/asheducation-2015.1.584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antigen-specific immunotherapies have emerged as important components of curative treatment algorithms for many cancers. In acute myeloid leukemia (AML), success has been less obvious. Nonetheless, among the few drugs shown to improve survival in recent randomized trials is the CD33 antibody-drug conjugate gemtuzumab ozogamicin. Significant antileukemic activity is also well documented for radioimmunoconjugates targeting CD33, CD45, or CD66. These therapeutics can intensify conditioning before hematopoietic cell transplantation, but their effect on patient outcomes needs clarification. Emerging data now suggest clinical antileukemic activity of several novel antibodies and perhaps some adoptive T-cell immunotherapies and vaccines. In parallel, numerous other agents targeting a wider variety of antigens are currently being explored. However, the antigenic heterogeneity characteristic of AML is a considerable limitation for all these therapeutics, and many important questions related to the ideal target antigen(s), disease situation in which to use these therapies, most suitable patient populations, exact treatment modalities, and details of supportive care needs remain open. Addressing such questions in upcoming studies will be required to ensure that antigen-directed therapies become an effective tool in AML, a disease for which outcomes with standard "3 + 7"-based chemotherapy have remained unsatisfactory in many patients.
Collapse
Affiliation(s)
| | - Roland B Walter
- Department of Medicine, Division of Hematology, and Department of Epidemiology, University of Washington, Seattle, WA; and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|