1
|
Effects of n-3 polyunsaturated fatty acids (ω-3) supplementation on some cardiovascular risk factors with a ketogenic Mediterranean diet. Mar Drugs 2015; 13:996-1009. [PMID: 25689563 PMCID: PMC4344614 DOI: 10.3390/md13020996] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/27/2015] [Accepted: 02/06/2015] [Indexed: 12/16/2022] Open
Abstract
Background: the ketogenic diet (KD) has become a widely used nutritional approach for weight loss. Some of the KD’s positive effects on metabolism and cardiovascular risk factors are similar to those seen after n-3 polyunsaturated fatty acids (ω-3) supplementation. We hypothesized that a ketogenic Mediterranean diet with phytoextracts combined with ω-3 supplementation may have increased positive effects on cardiovascular risk factors and inflammation. Methods: We analyzed 34 male overweight subjects; aged between 25 and 65 years who were overall healthy apart from overweight. The subjects followed a ketogenic diet protocol for four weeks; with (KDO3) or without (KD) ω-3 supplementation. Results: All subjects experienced a significant loss of body weight and body fat and there was no significant differences between treatment (body weight: KD—4.7 kg, KDO3—4.03 kg, body fat KD—5.41 kg, KDO3—5.86 kg). There were also significant decreases in total cholesterol, LDL-c, and glucose levels. Triglycerides and insulin levels decreased more in KDO3 vs. KD subjects, with a significant difference. All the investigated inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased significantly in KDO3 subjects whilst only TNF-α showed a significant decrease in KD subjects over the 12 month study period. No significant changes were observed in anti-inflammatory cytokines (IL-10 and IL-1Ra), creatinine, urea and uric acid. Adiponectin increased significantly only in the KDO3 group. Conclusions: ω-3 supplementation improved the positive effects of a ketogenic Mediterranean diet with phytoextracts on some cardiovascular/metabolic risk factors and inflammatory state.
Collapse
|
2
|
Proia P, Bianco A, Schiera G, Saladino P, Contrò V, Caramazza G, Traina M, Grimaldi KA, Palma A, Paoli A. PPARα gene variants as predicted performance-enhancing polymorphisms in professional Italian soccer players. Open Access J Sports Med 2014; 5:273-8. [PMID: 25525399 PMCID: PMC4266416 DOI: 10.2147/oajsm.s68333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The PPARα gene encodes the peroxisome proliferator-activator receptor alpha, a central regulator of expression of other genes involved in fatty acid metabolism. The purpose of this study was to determine the prevalence of G allele of the PPARα intron 7 G/C polymorphism (rs4253778) in professional Italian soccer players. Methods Sixty professional soccer players and 30 sedentary volunteers were enrolled in the study. Samples of venous blood were obtained at rest, in the morning, by conventional clinical procedures; blood serum was collected and total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured. An aliquot of anticoagulant-treated blood was used to prepare genomic DNA from whole blood. The G/C polymorphic site in PPARα intron 7 was scanned by using the PCR-RFLP (polymerase chain reaction restriction fragment length polymorphism) protocol with TaqI enzyme. Results We found variations in genotype distribution of PPARα polymorphism between professional soccer players and sedentary volunteers. Particularly, G alleles and the GG genotype were significantly more frequent in soccer players compared with healthy controls (64% versus 48%). No significant correlations were found between lipid profile and genotype background. Conclusion Previous results demonstrated an association of intron 7 G allele as well as the GG genotype in endurance athletes. Our result suggests that this is the case also in professional soccer players.
Collapse
Affiliation(s)
- Patrizia Proia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Patrizia Saladino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Valentina Contrò
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | | | - Marcello Traina
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Keith A Grimaldi
- Biomedical Engineering Laboratory, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Cresci S, Wu J, Province MA, Spertus JA, Steffes M, McGill JB, Alderman EL, Brooks MM, Kelsey SF, Frye RL, Bach RG. Peroxisome proliferator-activated receptor pathway gene polymorphism associated with extent of coronary artery disease in patients with type 2 diabetes in the bypass angioplasty revascularization investigation 2 diabetes trial. Circulation 2011; 124:1426-34. [PMID: 21911782 DOI: 10.1161/circulationaha.111.029173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) is the major cause of death in patients with type 2 diabetes mellitus. Although demographic and clinical factors associated with extent of CAD in patients with diabetes mellitus have been described, genetic factors have not. We hypothesized that genetic variation in peroxisome proliferator-activated receptor (PPAR) pathway genes, important in diabetes mellitus and atherosclerosis, would be associated with extent of CAD in patients with diabetes mellitus. METHODS AND RESULTS We genotyped 1043 patients (702 white, 175 blacks) from the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) genetic cohort for 3351 variants in 223 PPAR pathway genes using a custom targeted-genotyping array. Angiographic end points were determined by a core laboratory. In whites, a single variant (rs1503298) in TLL1 was significantly (P=5.5 × 10(-6)) associated with extent of CAD, defined as number of lesions with percent diameter stenosis ≥20%, after stringent Bonferroni correction for all 3351 single nucleotide polymorphisms. This association was validated in the diabetic subgroups of 2 independent cohorts, the Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction Patients' Health Status (TRIUMPH) post-myocardial infarction registry and the prospective Family Heart Study (FHS) of individuals at risk for CAD. TLL1rs1503298 was also significantly associated with extent of severe CAD (≥70% diameter stenosis; P=3.7 × 10(-2)) and myocardial jeopardy index (P=8.7 × 10(-4)). In general linear regression modeling, TLL1rs1503298 explained more variance of extent of CAD than the previously determined clinical factors. CONCLUSIONS We identified a variant in a single PPAR pathway gene, TLL1, that is associated with the extent of CAD independently of clinical predictors, specifically in patients with type 2 diabetes mellitus and CAD. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00006305.
Collapse
Affiliation(s)
- Sharon Cresci
- Cardiovascular Division, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO 63110-1093, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Genetic polymorphisms of peroxisome proliferator-activated receptors and the risk of cardiovascular morbidity and mortality in a community-based cohort in washington county, Maryland. PPAR Res 2011; 2008:276581. [PMID: 18288282 PMCID: PMC2233806 DOI: 10.1155/2008/276581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/15/2007] [Accepted: 10/02/2007] [Indexed: 12/03/2022] Open
Abstract
The primary aim of this study was to examine prospectively the associations between 5 peroxisome proliferator-activated receptor (PPAR) single nucleotide polymorphisms (SNPs) and cardiovascular morbidity and mortality in a community-based cohort study in Washington County, Maryland. Data were analyzed from 9,364 Caucasian men and women participating in CLUE-II. Genotyping on 5 PPAR polymorphisms was conducted using peripheral DNA samples collected in 1989. The followup period was from 1989 to 2003. The results showed that there were no statistically significant associations between the PPAR SNPs and cardiovascular deaths or events. In contrast, statistically significant age-adjusted associations were observed for PPARG rs4684847 with both baseline body mass and blood pressure, and for PPARG rs709158, PPARG rs1175543, and PPARD rs2016520 with baseline cholesterol levels. Future studies should be conducted to confirm these findings and to explore the associations in populations with greater racial and ethnic diversity.
Collapse
|
5
|
Purushothaman S, Ajitkumar VK, Renuka Nair R. Association of PPARα Intron 7 Polymorphism with Coronary Artery Disease: A Cross-Sectional Study. ISRN CARDIOLOGY 2011; 2011:816025. [PMID: 22347658 PMCID: PMC3262501 DOI: 10.5402/2011/816025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/13/2011] [Indexed: 11/23/2022]
Abstract
The allelic variants of peroxisome proliferator-activated receptor alpha (PPARα) can influence the risk of coronary artery disease (CAD) by virtue of its effect on lipid metabolism. However, the role of PPARα intronic polymorphism with CAD has received little attention. The association of allelic variants G/C at intron 7 of the PPAR-alpha gene with CAD was examined in a hospital-based Indian population.
PPAR genotyping was performed in 110 male patients with CAD and 120 age and ethnically matched healthy males by PCR amplification of the gene followed by restriction digestion. Presence of C allele showed a positive association with CAD (OR = 2.9; 95% CI [1.65–4.145]; P = .009) and also with dyslipidaemia (OR = 2.95, 95% CI (1.5–4.39); P < .05).
Impaired lipid metabolism in carriers of the PPARα Intron 7C allele is possibly responsible for the predilection to CAD.
Collapse
Affiliation(s)
- Sreeja Purushothaman
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 011, India
| | | | | |
Collapse
|
6
|
Cresci S, Jones PG, Sucharov CC, Marsh S, Lanfear DE, Garsa A, Courtois M, Weinheimer CJ, Wu J, Province MA, Kelly DP, McLeod HL, Spertus JA. Interaction between PPARA genotype and beta-blocker treatment influences clinical outcomes following acute coronary syndromes. Pharmacogenomics 2009; 9:1403-17. [PMID: 18855529 DOI: 10.2217/14622416.9.10.1403] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS beta-blockers (BB) are strongly recommended after an acute coronary syndrome (ACS), although all patients may not benefit. Causes for variable patient responses to BB are unknown. Given that myocardial ischemia and BB influence metabolic processes regulated by peroxisome proliferator-activated receptor alpha (PPARalpha), we hypothesized that interactions between polymorphisms of the PPARalpha gene (PPARA) and BB treatment would influence clinical outcome following ACS. PATIENTS & METHODS Patients were prospectively enrolled into an ACS registry. A total of 735 ACS patients were genotyped. Mortality and cardiac rehospitalization through 1 year were analyzed in relation to PPARA genotype and BB prescription (597 BB; 138 no BB) at discharge. RESULTS Significantly different outcomes associated with BB therapy were observed according to PPARA IVS7 2498 genotype (p = 0.002 for interaction). PPARA IVS7 2498 GG homozygous patients discharged on BB had decreased cardiac rehospitalization (hazard ratio [HR]: 0.52; 95% CI: 0.32-0.86; p = 0.011), while C allele carriers discharged on BB had nearly threefold increased cardiac rehospitalization (HR: 2.92; 95% CI: 1.32-6.92; p = 0.015; genotype interaction p = 0.0005) compared with patients not on BB. PPARA genotype was also associated with differences in PPARalpha expression, with significantly increased mRNA levels in myocardial samples from normal hearts among GC heterozygotes compared with GG homozygotes (p = 0.04). Transgenic mice with cardiac-specific overexpression of PPARalpha showed significantly reduced myocardial contractile and chronotropic responses to the beta-sympathomimetic dobutamine (p < 0.05) compared with wild-type littermates, supporting the hypothesis that increased PPARalpha levels result in a blunted beta-adrenergic response. CONCLUSIONS PPARA IVS7 2498 genotype is associated with heterogeneity in 1-year outcome in response to BB among patients following ACS, and may predict which patients benefit from BB therapy, putatively related to the effect of myocardial PPARalpha expression on beta-adrenergic responsiveness.
Collapse
Affiliation(s)
- Sharon Cresci
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8086, Saint Louis, MO 63110-1093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Isabel Panadero M, González MDC, Herrera E, Bocos C. Modulación del PPARα por agentes farmacológicos y naturales y sus implicaciones metabólicas. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2008. [DOI: 10.1016/s0214-9168(08)75789-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Abstract
The goal of pharmacogenetics is to define the genetic determinants of individual drug responsiveness, and thereby provide personalized treatment to each individual. The peroxisome proliferator-activated receptors (PPARs) are polypeptide products of a set of related genes functioning to regulate several cellular processes that are central to cardiovascular health and disease. Given their pleiotropic roles in lipid and glucose homeostasis, cardiac energy balance and regulation of adipocyte release of circulating inflammatory factors, it is not surprising that PPARs represent an attractive target for clinical investigation and intervention in disease states, such as diabetes, obesity, atherosclerosis, cardiomyopathy, cardiac hypertrophy and heart failure. Research into the manipulation of PPAR function by pharmacologic agents has already resulted in important advances in the treatment of diabetes mellitus and cardiovascular disease. It follows that PPAR pharmacogenetics promises important advances in the personalized treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sharon Cresci
- Washington University School of Medicine, Department of Medicine, Saint Louis, Missouri, 660 South Euclid Avenue, Campus Box 8086 Saint Louis, MO 63110-1093, USA
| |
Collapse
|
9
|
Abstract
The thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ agonists and have glucose-lowering, insulin-sensitizing and anti-inflammatory effects. TZDs are approved for the treatment of Type 2 diabetes, and have been studied as a diabetes-prevention strategy. Despite widespread use of TZDs, a large number of patients fail to achieve a substantial reduction in glucose, or an improvement in insulin sensitivity, following treatment. Available data suggest that polymorphisms in genes encoding TZD drug targets, effector proteins and metabolizing enzymes contribute to the observed interindividual variability in TZD response and disposition. The purpose of this review is to highlight recent developments in the field of TZD pharmacogenetics, specifically focusing on clinical studies that have investigated genetic determinants of TZD response (i.e., reduction in glycemia and improvement in insulin sensitivity), disposition (i.e., pharmacokinetics), and side effects in patients with Type 2 diabetes and patients at risk for Type 2 diabetes.
Collapse
Affiliation(s)
- Christina L Aquilante
- University of Colorado at Denver and Health Sciences Center, School of Pharmacy, Department of Pharmaceutical Sciences, 4200 East Ninth Avenue, Box C238, Denver, CO 80262, USA.
| |
Collapse
|
10
|
Seda O, Sedová L. Peroxisome proliferator-activated receptors as molecular targets in relation to obesity and Type 2 diabetes. Pharmacogenomics 2007; 8:587-96. [PMID: 17559348 DOI: 10.2217/14622416.8.6.587] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The three isotypes of peroxisome proliferator-activated receptors (PPARs) are currently perceived as major regulatory nodes (or hubs) of metabolic pathway networks, linking most prevalent diseases including Type 2 diabetes, obesity, dyslipidemia and atherosclerosis. The integrative functions of PPARs are also reflected in their ecogenetic profile, when the variants underlying pharmacogenetic interactions were also shown to modulate the effect of lifestyle factors. Despite their extensive clinical use, there are many outstanding issues, especially concerning their safety. Critical pharmacogenomic assessment is warranted for the new potent ligands of multiple PPAR isoforms as many have displayed serious side-effects in a limited number of treated subjects. Nevertheless, the advent of genomic, transcriptomic and system biology-level approaches, integrating knowledge from model systems and human biology, should greatly facilitate the transition to individualized PPAR-based therapies.
Collapse
Affiliation(s)
- Ondørej Seda
- Institute of Biology and Medical Genetics of the First Faculty of Medicine of Charles University and the General Teaching Hospital, Albertov 4, 12800 Prague 2, Prague, Czech Republic.
| | | |
Collapse
|
11
|
Marsh S, Van Booven DJ, McLeod HL. Global pharmacogenetics: giving the genome to the masses. Pharmacogenomics 2006; 7:625-31. [PMID: 16753009 DOI: 10.2217/14622416.7.4.625] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
With pharmacogenetics comes the promise of individualized therapy selection for many common diseases where multiple treatment options are available. Recent advances including the Human Genome Project, the International HapMap project, advances in throughput and reduction in cost of genetic testing, and the inclusion of genotype-related dosing recommendations into package inserts all point to the integration of pharmacogenetics into clinical practice. However, many countries will not have access to pharmacogenetics resources in the near future. Generation of global genotype profiles will provide a useful, but not perfect resource for incorporating pharmacogenetics into national drug formularies in the form of prioritization or surveillance where individual genotype data would not be attainable. The PharmacoGenetics for Every Nation Initiative is a first step to making pharmacogenetics applicable on a global level.
Collapse
Affiliation(s)
- Sharon Marsh
- Washington University School of Medicine, Department of Medicine, Room 1021 CSRB NT, 660 South Euclid Avenue, Campus Box 8069, St Louis, MO 63110, USA
| | | | | |
Collapse
|