1
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Mahajan AS, Stegh AH. Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14071615. [PMID: 35406387 PMCID: PMC8996871 DOI: 10.3390/cancers14071615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Spherical Nucleic Acids (SNAs) emerged as a new class of nanotherapeutics consisting of a nanoparticle core densely functionalized with a shell of radially oriented synthetic oligonucleotides. The unique three-dimensional architecture of SNAs protects the oligonucleotides from nuclease-mediated degradation, increases oligonucleotide bioavailability, and in the absence of auxiliary transfection agents, enables robust uptake into tumor and immune cells through polyvalent association with cell surface pattern recognition receptors. When composed of gene-regulatory small interfering (si)RNA or immunostimulatory DNA or RNA oligonucleotides, SNAs silence gene expression and induce immune responses superior to those raised by the oligonucleotides in their "free" form. Early phase clinical trials of gene-regulatory siRNA-based SNAs in glioblastoma (NCT03020017) and immunostimulatory Toll-like receptor 9 (TLR9)-agonistic SNAs carrying unmethylated CpG-rich oligonucleotides in solid tumors (NCT03086278) have shown that SNAs represent a safe, brain-penetrant therapy for inhibiting oncogene expression and stimulating immune responses against tumors. This review focuses on the application of SNAs as precision cancer therapeutics, summarizes the findings from first-in-human clinical trials of SNAs in solid tumors, describes the most recent preclinical efforts to rationally design next-generation multimodal SNA architectures, and provides an outlook on future efforts to maximize the anti-neoplastic activity of the SNA platform.
Collapse
Affiliation(s)
- Akanksha S. Mahajan
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
| | - Alexander H. Stegh
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
- Department of Neurological Surgery, The Brain Tumor Center, Washington University School of Medicine, Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
3
|
Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, Tate M, Schwartz M, Zuckerman L, Lezon R, Lukas RV, Jovanovic B, McCortney K, Colman H, Chen S, Lai B, Antipova O, Deng J, Li L, Tommasini-Ghelfi S, Hurley LA, Unruh D, Sharma NV, Kandpal M, Kouri FM, Davuluri RV, Brat DJ, Muzzio M, Glass M, Vijayakumar V, Heidel J, Giles FJ, Adams AK, James CD, Woloschak GE, Horbinski C, Stegh AH. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med 2021; 13:13/584/eabb3945. [PMID: 33692132 DOI: 10.1126/scitranslmed.abb3945] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most difficult cancers to effectively treat, in part because of the lack of precision therapies and limited therapeutic access to intracranial tumor sites due to the presence of the blood-brain and blood-tumor barriers. We have developed a precision medicine approach for GBM treatment that involves the use of brain-penetrant RNA interference-based spherical nucleic acids (SNAs), which consist of gold nanoparticle cores covalently conjugated with radially oriented and densely packed small interfering RNA (siRNA) oligonucleotides. On the basis of previous preclinical evaluation, we conducted toxicology and toxicokinetic studies in nonhuman primates and a single-arm, open-label phase 0 first-in-human trial (NCT03020017) to determine safety, pharmacokinetics, intratumoral accumulation and gene-suppressive activity of systemically administered SNAs carrying siRNA specific for the GBM oncogene Bcl2Like12 (Bcl2L12). Patients with recurrent GBM were treated with intravenous administration of siBcl2L12-SNAs (drug moniker: NU-0129), at a dose corresponding to 1/50th of the no-observed-adverse-event level, followed by tumor resection. Safety assessment revealed no grade 4 or 5 treatment-related toxicities. Inductively coupled plasma mass spectrometry, x-ray fluorescence microscopy, and silver staining of resected GBM tissue demonstrated that intravenously administered SNAs reached patient tumors, with gold enrichment observed in the tumor-associated endothelium, macrophages, and tumor cells. NU-0129 uptake into glioma cells correlated with a reduction in tumor-associated Bcl2L12 protein expression, as indicated by comparison of matched primary tumor and NU-0129-treated recurrent tumor. Our results establish SNA nanoconjugates as a potential brain-penetrant precision medicine approach for the systemic treatment of GBM.
Collapse
Affiliation(s)
- Priya Kumthekar
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | - Caroline H Ko
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Tatjana Paunesku
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karan Dixit
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Orin Bloch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew Tate
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margaret Schwartz
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Laura Zuckerman
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Ray Lezon
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Rimas V Lukas
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Borko Jovanovic
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Howard Colman
- Huntsman Cancer Institute and Department of Neurosurgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Junjing Deng
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Luxi Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Serena Tommasini-Ghelfi
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Lisa A Hurley
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Dusten Unruh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nitya V Sharma
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manoj Kandpal
- Preventive Medicine, Health and Biomedical Informatics, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Fotini M Kouri
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Ramana V Davuluri
- Preventive Medicine, Health and Biomedical Informatics, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Daniel J Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Muzzio
- Life Sciences Group, IIT Research Institute, Chicago, IL 60616, USA
| | | | | | | | - Francis J Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Ann K Adams
- Office for Research, Northwestern University, Evanston, IL 60208, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA. .,International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Darrigues E, Nima ZA, Griffin RJ, Anderson JM, Biris AS, Rodriguez A. 3D cultures for modeling nanomaterial-based photothermal therapy. NANOSCALE HORIZONS 2020; 5:400-430. [PMID: 32118219 DOI: 10.1039/c9nh00628a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photothermal therapy (PTT) is one of the most promising techniques for cancer tumor ablation. Nanoparticles are increasingly being investigated for use with PTT and can serve as theranostic agents. Based on the ability of near-infrared nano-photo-absorbers to generate heat under laser irradiation, PTT could prove advantageous in certain situations over more classical cancer therapies. To analyze the efficacy of nanoparticle-based PTT, preclinical in vitro studies typically use 2D cultures, but this method cannot completely mimic the complex tumor organization, bioactivity, and physiology that all control the complex penetration depth, biodistribution, and tissue diffusion parameters of nanomaterials in vivo. To fill this knowledge gap, 3D culture systems have been explored for PTT analysis. These models provide more realistic microenvironments that allow spatiotemporal oxygen gradients and cancer cell adaptations to be considered. This review highlights the work that has been done to advance 3D models for cancer microenvironment modeling, specifically in the context of advanced, functionalized nanoparticle-directed PTT.
Collapse
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Wu S, Tang S, Peng H, Jiang Y, Liu Y, Wu Z, Liu Q, Zhu X. Effects of lentivirus-mediated CCR3 RNA interference on the function of mast cells of allergic rhinitis in mice. Int Immunopharmacol 2020; 78:106011. [DOI: 10.1016/j.intimp.2019.106011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
|
6
|
Damen M, Groenen AJJ, van Dongen SFM, Nolte RJM, Scholte BJ, Feiters MC. Transfection by cationic gemini lipids and surfactants. MEDCHEMCOMM 2018; 9:1404-1425. [PMID: 30288217 PMCID: PMC6148748 DOI: 10.1039/c8md00249e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Diseases that are linked to defective genes or mutations can in principle be cured by gene therapy, in which damaged or absent genes are either repaired or replaced by new DNA in the nucleus of the cell. Related to this, disorders associated with elevated protein expression levels can be treated by RNA interference via the delivery of siRNA to the cytoplasm of cells. Polynucleotides can be brought into cells by viruses, but this is not without risk for the patient. Alternatively, DNA and RNA can be delivered by transfection, i.e. by non-viral vector systems such as cationic surfactants, which are also referred to as cationic lipids. In this review, recent progress on cationic lipids as transfection vectors will be discussed, with special emphasis on geminis, surfactants with 2 head groups and 2 tails connected by a spacer.
Collapse
Affiliation(s)
- M Damen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - A J J Groenen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - S F M van Dongen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - R J M Nolte
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - B J Scholte
- Departments of Pediatric pulmonology and Cell Biology , Erasmus MC, P. O. Box 2040 , 3000 CA Rotterdam , The Netherlands
| | - M C Feiters
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| |
Collapse
|
7
|
Pluta R, Espinosa M. Antisense and yet sensitive: Copy number control of rolling circle-replicating plasmids by small RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1500. [PMID: 30074293 DOI: 10.1002/wrna.1500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 12/27/2022]
Abstract
Bacterial plasmids constitute a wealth of shared DNA amounting to about 20% of the total prokaryotic pangenome. Plasmids replicate autonomously and control their replication by maintaining a fairly constant number of copies within a given host. Plasmids should acquire a good fitness to their hosts so that they do not constitute a genetic load. Here we review some basic concepts in plasmid biology, pertaining to the control of replication and distribution of plasmid copies among daughter cells. A particular class of plasmids is constituted by those that replicate by the rolling circle mode (rolling circle-replicating [RCR]-plasmids). They are small double-stranded DNA molecules, with a rather high number of copies in the original host. RCR-plasmids control their replication by means of a small short-lived antisense RNA, alone or in combination with a plasmid-encoded transcriptional repressor protein. Two plasmid prototypes have been studied in depth, namely the staphylococcal plasmid pT181 and the streptococcal plasmid pMV158, each corresponding to the two types of replication control circuits, respectively. We further discuss possible applications of the plasmid-encoded antisense RNAs and address some future directions that, in our opinion, should be pursued in the study of these small molecules. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Radoslaw Pluta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
8
|
Wei XF, Feng YF, Chen QL, Zhang QK. CDA gene silencing regulated the proliferation and apoptosis of chronic myeloid leukemia K562 cells. Cancer Cell Int 2018; 18:96. [PMID: 30002603 PMCID: PMC6038203 DOI: 10.1186/s12935-018-0587-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background As a disease of hematopoietic stem cell, chronic myeloid leukemia (CML) possesses unique biological and clinical features. However, the biologic mechanism underlying its development remains poorly understood. Thus, the objective of the present study is to discuss the effect of cytidine deaminase (CDA) gene silencing on the apoptosis and proliferation of CML K562 cells. Methods CDA mRNA expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzymatic activity of CDA was measured by a nuclide liquid scintillation method. RT-qPCR and Western blot analysis were used to detect CDA mRNA and protein expression. Cell proliferation, apoptosis and cell cycle were measured by CCK-8 assay and flow cytometry. The expression of proteins relevant to cell proliferation, apoptosis and cell cycle was measured by Western blot analysis. Tumor xenografts were implanted in nude mice to verify the effect of CDA silencing on tumor growth in vivo. Results CML and AL patients showed increased mRNA expression and enzymatic activity of CDA. Compared with the blank group, the mRNA and protein expression of CDA in the shRNA-1 and shRNA-2 groups decreased significantly. As a result, the proliferation of K562 cells was inhibited after CDA silencing and the cells were mainly arrested in S and G2 phases, while the apoptosis rate of these cells was increased. In addition, CDA gene silencing in K562 cells led to down-regulated p-ERK1/2, t-AKT, p-AKT and BCL-2 expression and up-regulated expression of P21, Bax, cleaved caspase-3/total caspase-3 and cleaved PARP/total PARP. Finally, CDA gene silencing inhibited tumor growth. Conclusion Our study demonstrated that CDA gene silencing could inhibit CML cell proliferation and induce cell apoptosis. Therefore, CDA gene silencing may become an effective target for the treatment of leukemia.
Collapse
Affiliation(s)
- Xiao-Fang Wei
- Department of Hematology, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou, 730000 Gansu People's Republic of China
| | - You-Fan Feng
- Department of Hematology, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou, 730000 Gansu People's Republic of China
| | - Qiao-Lin Chen
- Department of Hematology, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou, 730000 Gansu People's Republic of China
| | - Qi-Ke Zhang
- Department of Hematology, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou, 730000 Gansu People's Republic of China
| |
Collapse
|
9
|
Cook PR, Tabor GT. Deciphering fact from artifact when using reporter assays to investigate the roles of host factors on L1 retrotransposition. Mob DNA 2016; 7:23. [PMID: 27895722 PMCID: PMC5120415 DOI: 10.1186/s13100-016-0079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/04/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Long INterspersed Element-1 (L1, LINE-1) is the only autonomous mobile DNA element in humans and has generated as much as half of the genome. Due to increasing clinical interest in the roles of L1 in cancer, embryogenesis and neuronal development, it has become a priority to understand L1-host interactions and identify host factors required for its activity. Apropos to this, we recently reported that L1 retrotransposition in HeLa cells requires phosphorylation of the L1 protein ORF1p at motifs targeted by host cell proline-directed protein kinases (PDPKs), which include the family of mitogen-activated protein kinases (MAPKs). Using two engineered L1 reporter assays, we continued our investigation into the roles of MAPKs in L1 activity. RESULTS We found that the MAPK p38δ phosphorylated ORF1p on three of its four PDPK motifs required for L1 activity. In addition, we found that a constitutively active p38δ mutant appeared to promote L1 retrotransposition in HeLa cells. However, despite the consistency of these findings with our earlier work, we identified some technical concerns regarding the experimental methodology. Specifically, we found that exogenous expression of p38δ appeared to affect at least one heterologous promoter in an engineered L1 reporter, as well as generate opposing effects on two different reporters. We also show that two commercially available non-targeting control (NTC) siRNAs elicit drastically different effects on the apparent retrotransposition reported by both L1 assays, which raises concerns about the use of NTCs as normalizing controls. CONCLUSIONS Engineered L1 reporter assays have been invaluable for determining the functions and critical residues of L1 open reading frames, as well as elucidating many aspects of L1 replication. However, our results suggest that caution is required when interpreting data obtained from L1 reporters used in conjunction with exogenous gene expression or siRNA.
Collapse
Affiliation(s)
- Pamela R. Cook
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892 USA
| | - G. Travis Tabor
- National Institute of Child Health and Human Development, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892 USA
| |
Collapse
|
10
|
Sánchez-Peris M, Murga J, Falomir E, Carda M, Marco JA. Synthesis of honokiol analogues and evaluation of their modulating action on VEGF protein secretion and telomerase-related gene expressions. Chem Biol Drug Des 2016; 89:577-584. [DOI: 10.1111/cbdd.12880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Affiliation(s)
- María Sánchez-Peris
- Department of Inorganic and Organic Chemistry; University Jaume I; Castellón Spain
| | - Juan Murga
- Department of Inorganic and Organic Chemistry; University Jaume I; Castellón Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry; University Jaume I; Castellón Spain
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry; University Jaume I; Castellón Spain
| | - Juan Alberto Marco
- Department of Organic Chemistry; University of Valencia; Burjassot Spain
| |
Collapse
|
11
|
Wu HL, Li SM, Hu J, Yu X, Xu H, Chen Z, Ye ZQ. Demystifying the mechanistic and functional aspects of p21 gene activation with double-stranded RNAs in human cancer cells. J Exp Clin Cancer Res 2016; 35:145. [PMID: 27639690 PMCID: PMC5027115 DOI: 10.1186/s13046-016-0423-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recently identified phenomenon of double-stranded RNA (dsRNA)-mediated gene activation (RNAa) has been studied extensively, as it is present in humans, mice, and Caenorhabditis elegans, suggesting that dsRNA-mediated RNAa is an evolutionarily conserved mechanism. Previous studies have shown that dsP21-322 can induce tumor suppressor gene p21 expression in several human cancer cells. Nonetheless, the role of dsRNAs in the activation of gene expression, including their target molecules and associated key factors, remains poorly understood. METHODS Oligonucleotides were used to overexpress dsRNAs and dsControl. Real-time PCR and Western blotting were used to detect corresponding mRNA and protein expression, respectively. Fluorescence microscopy was used to examine the kinetics of dsRNA subcellular distribution. Luciferase reporter assays were performed to verify dsRNA target molecules. Chromatin immunoprecipitation (ChIP) assays were carried out to determine whether histone modification and other associated key factors are involved in saRNA-mediated p21 expression. RESULTS We demonstrated that dsRNA-mediated p21 induction in human cell lines is a common phenomenon. This process occurs at the transcriptional level, and the complementary p21 promoter is the intended dsRNA target. Additionally, ChIP assays indicated that p21 activation was accompanied by an increased enrichment of AGO1 and the trimethylation of histone H3K4 at dsRNA-targeted genomic sites. CONCLUSION These data systematically reveal the mechanistic and functional aspects of ncRNA-mediated p21 activation in human cancer cells, which may be a useful tool to analyze gene function and aid in the development of novel drug targets for cancer therapeutics.
Collapse
Affiliation(s)
- Huan-Lei Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Sen-Mao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China. .,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhang-Qun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Avenue, No. 1095, Wuhan, 430030, People's Republic of China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
12
|
Huang JY, Gao ZJ, Shen MR, Meng X. Effect of RNA inference mediated CXCR4 knockdown on metastasis of AsPC-1 cells. Shijie Huaren Xiaohua Zazhi 2016; 24:1342-1348. [DOI: 10.11569/wcjd.v24.i9.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the changes in proliferation, migration, and invasion of pancreatic cancer line AsPC-1 after CXCR4 is knocked down by RNA interference, and to validate the potential mechanism underlying these changes.
METHODS: AsPC-1 cells were transfected with recombinant lentivirus containing specific shRNA targeting CXCR-4 and included in an experimental group (LV-siCXCR4-1), whereas AsPC-1 cells treated with recombinant lentivirus containing scramble shRNA were used as a negative control (AsPC-1-LV-con). Besides, non-treated AsPC-1 cells were used as a blank control (AsPC-1). After cell cultures were treated with SDF-1α, cell proliferation, migration and invasion in vitro were analyzed, and expression of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2 and -9 were quantified.
RESULTS: Under the culture conditions with SFM or 10% normal calf serum, SDF-1α could stimulate the proliferation of AsPC-1 cells and AsPC-1-LV-Con cells (P < 0.01), but had no significant effect on the proliferation of AsPC-1-LV-siCXCR4-1 cells. SDF-1α displayed a promoting effect on the migration and invasion of AsPC-1 and AsPC-1-LV-Con cells (P < 0.01), but showed no significant effect in LV-siCXCR4-1 cells. In the presence of SDF-1α, the protein expression of MMP9 and VEGF in LV-siCXCR4-1 cells was less than that in AsPC-1-LV-Con cells (P < 0.01).
CONCLUSION: RNA interference targeting CXCR-4 could significantly suppress excessive proliferation, migration and invasion of AsPC-1 cells induced by SDF-1α intervention, suggesting that CXCR4/SDF-1 axis contributes to proliferation, invasion and metastasis of pancreatic cancer. RNA interference could be used as a promising approach for therapy of pancreatic cancer.
Collapse
|
13
|
Tang B, Hu Z, Li Y, Yuan S, Wang Z, Yu S, He S. Downregulation of δ opioid receptor by RNA interference enhances the sensitivity of BEL/FU drug‑resistant human hepatocellular carcinoma cells to 5‑FU. Mol Med Rep 2016; 13:59-66. [PMID: 26549838 PMCID: PMC4686084 DOI: 10.3892/mmr.2015.4511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 09/09/2015] [Indexed: 01/04/2023] Open
Abstract
δ opioid receptor (DOR) was the first opioid receptor of the G protein‑coupled receptor family to be cloned. Our previous studies demonstrated that DOR is involved in regulating the development and progression of human hepatocellular carcinoma (HCC), and is involved in the regulation of the processes of invasion and metastasis of HCC cells. However, whether DOR is involved in the development and progression of drug resistance in HCC has not been reported and requires further elucidation. The aim of the present study was to investigate the expression levels of DOR in the drug‑resistant HCC BEL‑7402/5‑fluorouracil (BEL/FU) cell line, and its effects on drug resistance, in order to preliminarily elucidate the effects of DOR in HCC drug resistance. The results of the present study demonstrated that DOR was expressed at high levels in the BEL/FU cells, and the expression levels were higher, compared with those in normal liver cells. When the expression of DOR was silenced, the proliferation of the drug‑resistant HCC cells were unaffected. However, when the cells were co‑treated with a therapeutic dose of 5‑FU, the proliferation rate of the BEL/FU cells was significantly inhibited, a large number of cells underwent apoptosis, cell cycle progression was arrested and changes in the expression levels of drug‑resistant proteins were observed. Overall, the expression of DOR was upregulated in the drug‑resistant HCC cells, and its functional status was closely associated with drug resistance in HCC. Therefore, DOR may become a recognized target molecule with important roles in the clinical treatment of drug‑resistant HCC.
Collapse
Affiliation(s)
- Bo Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Zhigao Hu
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Yang Li
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Shengguang Yuan
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Zhenran Wang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Songqing He
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|