1
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:149-177. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
2
|
Iida Y, Harada M. Local cell therapy using CCL19-expressing allogeneic mesenchymal stem cells exerts robust antitumor effects by accumulating CD103 + IL-12-producing dendritic cells and priming CD8 + T cells without involving draining lymph nodes. J Immunother Cancer 2024; 12:e009683. [PMID: 39672553 DOI: 10.1136/jitc-2024-009683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade is a promising anticancer therapy, whereas the presence of T cells in tumor sites is indispensable for its therapeutic efficacy. To promote the infiltration of T cells and dendritic cells (DCs) into the tumor, we previously proposed a local cell therapy using chemokine (C-C motif) ligand 19 (CCL19)-expressing immortalized syngeneic immortalized mesenchymal stem cells (syn-iMSC/CCL19). However, the preparation of syngeneic/autologous MSC from individual hosts limits the clinical application of this cell therapy. METHODS In this study, we further developed a new cell therapy using allogeneic iMSC/CCL19 (allo-iMSC/CCL19) using several tumor mice models. RESULTS The allo-iMSC/CCL19 therapy exerted drastic antitumor effects, in which the host's T cells were induced to respond to allogeneic MSC. In addition, the allo-iMSC/CCL19 therapy promoted the infiltration of CD103+ interleukin (IL)-12-producing DCs and priming of CD8+ T cells at tumor sites compared with that using syn-iMSC/CCL19. The antitumor effect of allo-iMSC/CCL19 therapy was not influenced by fingolimod, a sphingosine 1-phosphate receptor modulator, implying no involvement of draining lymph nodes in the priming of tumor-specific T cells. CONCLUSION These results suggest that allo-iMSC/CCL19 therapy exerts dramatic antitumor effects by promoting the infiltration of CD103+ IL-12-producing DCs and thereby priming tumor-specific CD8+ T cells at tumor sites. This local cell therapy could be a promising approach to anticancer therapy, particularly for overcoming dysfunction in the cancer-immunity cycle.
Collapse
Affiliation(s)
- Yuichi Iida
- Immunology, Shimane University Faculty of Medicine Graduate School of Medicine, Izumo, Japan
| | - Mamoru Harada
- Immunology, Shimane University Faculty of Medicine Graduate School of Medicine, Izumo, Japan
| |
Collapse
|
3
|
Teng FS, de Faria Lainetti P, Simão Franzoni M, Fernando Leis Filho A, de Oliveira Massoco Salles Gomes C, Laufer-Amorim R, Martins Amorim R, Fonseca-Alves CE. Canine Adipose-Derived Mesenchymal Stromal Cells Reduce Cell Viability and Migration of Metastatic Canine Oral Melanoma Cell Lines In Vitro. Vet Sci 2024; 11:636. [PMID: 39728976 PMCID: PMC11680336 DOI: 10.3390/vetsci11120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Canine oral melanoma (COM) is a promising target for immunomodulatory therapies aimed at enhancing the immune system's antitumor response. Given that adipose-derived mesenchymal stem cells (Ad-MSCs) possess immunomodulatory properties through cytokine release, we hypothesized that co-culturing Ad-MSCs and canine peripheral blood mononuclear cells (PBMCs) could stimulate interleukin (IL) production against melanoma cell lines (MCCLs) and help identify therapeutic targets. This study evaluated IL-2, IL-8, and IL-12 expressions in co-culture with MCCL, Ad-MSCs, and PBMCs and assessed the relationship between gene expression, cell viability, and migration. Using four experimental groups in a Transwell insert system to separate cell types, we found that Ad-MSCs can reduce MCCL migration and viability, though the effect may vary depending on each cell line's susceptibility. Furthermore, Ad-MSCs modified IL expression profiles in co-cultured cells. Our findings suggest that Ad-MSCs could have therapeutic potential for COM by inhibiting cell migration and reducing viability. However, deeper insights into Ad-MSC interactions with the tumor microenvironment and melanoma-specific factors will be essential to optimize therapeutic efficacy.
Collapse
Affiliation(s)
- Fwu Shing Teng
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil; (F.S.T.); (P.d.F.L.); (M.S.F.); (A.F.L.F.)
| | - Patricia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil; (F.S.T.); (P.d.F.L.); (M.S.F.); (A.F.L.F.)
| | - Mayara Simão Franzoni
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil; (F.S.T.); (P.d.F.L.); (M.S.F.); (A.F.L.F.)
| | - Antonio Fernando Leis Filho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil; (F.S.T.); (P.d.F.L.); (M.S.F.); (A.F.L.F.)
| | | | - Renée Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil; (R.L.-A.); (R.M.A.)
| | - Rogério Martins Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil; (R.L.-A.); (R.M.A.)
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil; (F.S.T.); (P.d.F.L.); (M.S.F.); (A.F.L.F.)
- Institute of Veterinary Oncology (IOVET), Sao Paulo 05027-020, Brazil
- Vet Precision Laboratory, Botucatu 18610-034, Brazil
| |
Collapse
|
4
|
Cao W, Zeng Z, Sun J, Chen Y, Kuang F, Luo S, Lan J, Lei S. Exosome-derived circ-001422 promotes tumor-associated macrophage M2 polarization to accelerate the progression of glioma. Commun Biol 2024; 7:1504. [PMID: 39538012 PMCID: PMC11561164 DOI: 10.1038/s42003-024-07134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cytokines, tumor cells, and tumor-associated macrophages play crucial roles in the composition of glioma tissue. Studies have demonstrated that certain cytokines can induce M2 polarization of tumor-associated macrophages and contribute to the progression of glioma. Nonetheless, the intricate molecular interactions among cytokines, glioma cells, and tumor-associated macrophages remain largely unexplored. To investigate this cross-talk, a combination of RNA-sequencing, chromatin immunoprecipitation, immunoprecipitation, exosome isolation, and biological experiments were employed. Treatment with IL-6 significantly increased circ-001422 expression in glioma cells. A poorer prognosis was associated with elevated levels of circ-001422 in glioma tissues. Circ-001422 was transcribed directly by STAT3 through binding to its promoter. Circ-001422 exerted cancer-promoting functions when co-cultured with M2 macrophages. Furthermore, glioma cells were found to transfer circ-001422 to macrophages via an exosomal pathway, promoting M2 polarization. Mechanically, circ-001422 interacted with p300, resulting in STAT3 acetylation, thus promoting nuclear localization and transcriptional activity of STAT3/NF-κB and M2 macrophage polarization. In conclusion, glioma cells released exosomes enriched with circ-001422, which in turn induce M2 macrophage polarization by activating the STAT3/NF-κB pathway, thereby enhancing the aggressive characteristics of glioma cells. Targeting circ-001422 may represent a potential therapeutic approach for glioma.
Collapse
Affiliation(s)
- Wenpeng Cao
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Postdoctoral workstation, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - JianFei Sun
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Yunhua Chen
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - FaGuang Kuang
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Shipeng Luo
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Jinzhi Lan
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| |
Collapse
|
5
|
Ekpo MD, Xie J, Liu X, Onuku R, Boafo GF, Tan S. Incorporating Cryopreservation Evaluations Into the Design of Cell-Based Drug Delivery Systems: An Opinion Paper. Front Immunol 2022; 13:967731. [PMID: 35911753 PMCID: PMC9334677 DOI: 10.3389/fimmu.2022.967731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Raphael Onuku
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- *Correspondence: Songwen Tan,
| |
Collapse
|
6
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
7
|
Yu X, Li D, Xue L, Li R. Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2022.2061354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | | | - Runze Li
- The Pennsylvania State University
| |
Collapse
|
8
|
Hwang EI, Sayour EJ, Flores CT, Grant G, Wechsler-Reya R, Hoang-Minh LB, Kieran MW, Salcido J, Prins RM, Figg JW, Platten M, Candelario KM, Hale PG, Blatt JE, Governale LS, Okada H, Mitchell DA, Pollack IF. The current landscape of immunotherapy for pediatric brain tumors. NATURE CANCER 2022; 3:11-24. [PMID: 35121998 DOI: 10.1038/s43018-021-00319-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.
Collapse
Affiliation(s)
- Eugene I Hwang
- Division of Oncology, Brain Tumor Institute, Children's National Hospital, Washington, DC, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Catherine T Flores
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Robert Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lan B Hoang-Minh
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | | | | | - Robert M Prins
- Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John W Figg
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University and CCU Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Kate M Candelario
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Paul G Hale
- Children's Brain Trust, Coral Springs, FL, USA
| | - Jason E Blatt
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Lance S Governale
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Duane A Mitchell
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Niknam MR, Attari F. The Potential Applications of Stem Cells for Cancer Treatment. Curr Stem Cell Res Ther 2022; 17:26-42. [PMID: 35048802 DOI: 10.2174/1574888x16666210810100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
:
Scientists encounter many obstacles in traditional cancer therapies, including the side effects
on the healthy cells, drug resistance, tumor relapse, the short half-life of employed drugs in
the blood circulation, and the improper delivery of drugs toward the tumor site. The unique traits of
stem cells (SCs) such as self-renewal, differentiation, tumor tropism, the release of bioactive
molecules, and immunosuppression have opened a new window for utilizing SCs as a novel tool in
cancer treatment. In this regard, engineered SCs can secrete anti-cancer proteins or express enzymes
used in suicide gene therapy which locally induce apoptosis in neoplastic cells via the bystander
effect. These cells also stand as proper candidates to serve as careers for drug-loaded nanoparticles
or to play suitable hosts for oncolytic viruses. Moreover, they harbor great potential to be
employed in immunotherapy and combination therapy. However, tactful strategies should be devised
to allow easier transplantation and protection of SCs from in vivo immune responses. In spite
of the great hope concerning SCs application in cancer therapy, there are shortcomings and challenges
to be addressed. This review tends to elaborate on recent advances on the various applications
of SCs in cancer therapy and existing challenges in this regard.
Collapse
Affiliation(s)
- Malikeh Rad Niknam
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
11
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
12
|
Calinescu AA, Kauss MC, Sultan Z, Al-Holou WN, O'Shea SK. Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol 2021; 10:CNS73. [PMID: 34006134 PMCID: PMC8162173 DOI: 10.2217/cns-2020-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, the deadliest form of primary brain tumor, remains a disease without cure. Treatment resistance is in large part attributed to limitations in the delivery and distribution of therapeutic agents. Over the last 20 years, numerous preclinical studies have demonstrated the feasibility and efficacy of stem cells as antiglioma agents, leading to the development of trials to test these therapies in the clinic. In this review we present and analyze these studies, discuss mechanisms underlying their beneficial effect and highlight experimental progress, limitations and the emergence of promising new therapeutic avenues. We hope to increase awareness of the advantages brought by stem cells for the treatment of glioblastoma and inspire further studies that will lead to accelerated implementation of effective therapies. Glioblastoma is the deadliest and most common form of brain tumor, for which there is no cure. It is very difficult to deliver medicine to the tumor cells, because they spread out widely into the normal brain, and local blood vessels represent a barrier that most medicines cannot cross. It was shown, in many studies over the last 20 years, that stem cells are attracted toward the tumor and that they can deliver many kinds of therapeutic agents directly to brain cancer cells and shrink the tumor. In this review we analyze these studies and present new discoveries that can be used to make stem cell therapies for glioblastoma more effective to prolong the life of patients with brain tumors.
Collapse
Affiliation(s)
| | - McKenzie C Kauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Literature Science & Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zain Sultan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sue K O'Shea
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Ho YJ, Li JP, Fan CH, Liu HL, Yeh CK. Ultrasound in tumor immunotherapy: Current status and future developments. J Control Release 2020; 323:12-23. [PMID: 32302759 DOI: 10.1016/j.jconrel.2020.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has considerable potential in eliminating cancers by activating the host's own immune system, while the thermal and mechanical effects of ultrasound have various applications in tumor therapy. Hyperthermia, ablation, histotripsy, and microbubble stable/inertial cavitation can alter the tumor microenvironment to enhance immunoactivation to inhibit tumor growth. Microbubble cavitation can increase vessel permeability and thereby improve the delivery of immune cells, cytokines, antigens, and antibodies to tumors. Violent microbubble cavitation can disrupt tumor cells and efficiently expose them to numerous antigens so as to promote the maturity of antigen-presenting cells and subsequent adaptive immune-cell activation. This review provides an overview and compares the mechanisms of ultrasound-induced immune modulation for peripheral and brain tumor therapy, even degenerative brain diseases therapy. The possibility of reversing tumors to an immunoactive microenvironment by utilizing the cavitation of microbubbles loaded with therapeutic gases is also proposed as another potential pathway for immunotherapy. Finally, we disuss the challenges and opportunities of ultrasound in immunotherapy for future development.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ju-Pi Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan 333, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
14
|
Hutzen B, Ghonime M, Lee J, Mardis ER, Wang R, Lee DA, Cairo MS, Roberts RD, Cripe TP, Cassady KA. Immunotherapeutic Challenges for Pediatric Cancers. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:38-48. [PMID: 31650024 PMCID: PMC6804520 DOI: 10.1016/j.omto.2019.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors contain a mixture of malignant cells and non-malignant infiltrating cells that often create a chronic inflammatory and immunosuppressive microenvironment that restricts immunotherapeutic approaches. Although childhood and adult cancers share some similarities related to microenvironmental changes, pediatric cancers are unique, and adult cancer practices may not be wholly applicable to our pediatric patients. This review highlights the differences in tumorigenesis, viral infection, and immunologic response between children and adults that need to be considered when trying to apply experiences from experimental therapies in adult cancer patients to pediatric cancers.
Collapse
Affiliation(s)
- Brian Hutzen
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mohammed Ghonime
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joel Lee
- The Ohio State University, Columbus, OH, USA
| | - Elaine R Mardis
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Institute for Genomic Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ruoning Wang
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dean A Lee
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mitchell S Cairo
- Department of Pediatrics, Cancer and Blood Diseases Center, New York Medical College, Valhalla, NY, USA
| | - Ryan D Roberts
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Timothy P Cripe
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kevin A Cassady
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Division of Pediatric Infection Diseases, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
15
|
Javan MR, Khosrojerdi A, Moazzeni SM. New Insights Into Implementation of Mesenchymal Stem Cells in Cancer Therapy: Prospects for Anti-angiogenesis Treatment. Front Oncol 2019; 9:840. [PMID: 31555593 PMCID: PMC6722482 DOI: 10.3389/fonc.2019.00840] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment interacts with tumor cells, establishing an atmosphere to contribute or suppress the tumor development. Among the cells which play a role in the tumor microenvironment, mesenchymal stem cells (MSCs) have been demonstrated to possess the ability to orchestrate the fate of tumor cells, drawing the attention to the field. MSCs have been considered as cells with double-bladed effects, implicating either tumorigenic or anti-tumor activity. On the other side, the promising potential of MSCs in treating human cancer cells has been observed from the clinical studies. Among the beneficial characteristics of MSCs is the natural tumor-trophic migration ability, providing facility for drug delivery and, therefore, targeted treatment to detach tumor and metastatic cells. Moreover, these cells have been the target of engineering approaches, due to their easily implemented traits, in order to obtain the desired expression of anti-angiogenic, anti-proliferative, and pro-apoptotic properties, according to the tumor type. Tumor angiogenesis is the key characteristic of tumor progression and metastasis. Manipulation of angiogenesis has become an attractive approach for cancer therapy since the introduction of the first angiogenesis inhibitor, namely bevacizumab, for metastatic colorectal cancer therapy. This review tries to conclude the approaches, with focus on anti-angiogenesis approach, in implementing the MSCs to combat against tumor cell progression.
Collapse
Affiliation(s)
- Mohammad Reza Javan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2820853. [PMID: 31205939 PMCID: PMC6530243 DOI: 10.1155/2019/2820853] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Stem cell-based therapies exhibit profound therapeutic potential for treating various human diseases, including cancer. Among the cell types that can be used for this purpose, mesenchymal stem cells (MSCs) are considered as promising source of stem cells in personalized cell-based therapies. The inherent tumor-tropic property of MSCs can be used to target cancer cells. Although the impacts of MSCs on tumor progression remain elusive, they have been genetically modified or engineered as targeted anticancer agents which could inhibit tumor growth by blocking different processes of tumor. In addition, there are close interactions between MSCs and cancer stem cells (CSCs). MSCs can regulate the growth of CSCs through paracrine mechanisms. This review aims to focus on the current knowledge about MSCs-based tumor therapies, the opportunities and challenges, as well as the prospective of its further clinical implications.
Collapse
|
17
|
Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study. J Neurooncol 2016; 130:517-527. [PMID: 27624914 DOI: 10.1007/s11060-016-2245-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/21/2016] [Indexed: 12/29/2022]
Abstract
Recurrent high-grade gliomas (HGGs) of childhood have an exceedingly poor prognosis with current therapies. Accordingly, new treatment approaches are needed. We initiated a pilot trial of vaccinations with peptide epitopes derived from glioma-associated antigens (GAAs) overexpressed in these tumors in HLA-A2+ children with recurrent HGG that had progressed after prior treatments. Peptide epitopes for three GAAs (EphA2, IL13Rα2, survivin), emulsified in Montanide-ISA-51, were administered subcutaneously adjacent to intramuscular injections of poly-ICLC every 3 weeks for 8 courses, followed by booster vaccines every 6 weeks. Primary endpoints were safety and T-cell responses against the GAA epitopes, assessed by enzyme-linked immunosorbent spot (ELISPOT) analysis. Treatment response was evaluated clinically and by magnetic resonance imaging. Twelve children were enrolled, 6 with glioblastoma, 5 with anaplastic astrocytoma, and one with malignant gliomatosis cerebri. No dose-limiting non-CNS toxicity was encountered. ELISPOT analysis, in ten children, showed GAA responses in 9: to IL13Rα2 in 4, EphA2 in 9, and survivin in 3. One child had presumed symptomatic pseudoprogression, discontinued vaccine therapy, and responded to subsequent treatment. One other child had a partial response that persisted throughout 2 years of vaccine therapy, and continues at >39 months. Median progression-free survival (PFS) from the start of vaccination was 4.1 months and median overall survival (OS) was 12.9 months. 6-month PFS and OS were 33 and 73 %, respectively. GAA peptide vaccination in children with recurrent malignant gliomas is generally well tolerated, and has preliminary evidence of immunological and modest clinical activity.
Collapse
|
18
|
Quaranta P, Focosi D, Freer G, Pistello M. Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines. Stem Cells Dev 2016; 25:1321-41. [PMID: 27476883 DOI: 10.1089/scd.2016.0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) can be found in various body sites. Their main role is to differentiate into cartilage, bone, muscle, and fat cells to allow tissue maintenance and repair. During inflammation, MSCs exhibit important immunomodulatory properties that are not constitutive, but require activation, upon which they may exert immunosuppressive functions. MSCs are defined as "sensors of inflammation" since they modulate their ability of interfering with the immune system both in vitro and in vivo upon interaction with different factors. MSCs may influence immune responses through different mechanisms, such as direct cell-to-cell contact, release of soluble factors, and through the induction of anergy and apoptosis. Human MSCs are defined as plastic-adherent cells expressing specific surface molecules. Lack of MHC class II antigens makes them appealing as allogeneic tools for the therapy of both autoimmune diseases and cancer. MSC therapeutic potential could be highly enhanced by the expression of exogenous cytokines provided by transduction with viral vectors. In this review, we attempt to summarize the results of a great number of in vitro and in vivo studies aimed at improving the ability of MSCs as immunomodulators in the therapy of autoimmune, degenerative diseases and cancer. We will also compare results obtained with different vectors to deliver heterologous genes to these cells.
Collapse
Affiliation(s)
- Paola Quaranta
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy
| | - Daniele Focosi
- 2 North-Western Tuscany Blood Bank, Pisa University Hospital , Pisa, Italy
| | - Giulia Freer
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| | - Mauro Pistello
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| |
Collapse
|
19
|
Shah K. Stem cell-based therapies for tumors in the brain: are we there yet? Neuro Oncol 2016; 18:1066-78. [PMID: 27282399 DOI: 10.1093/neuonc/now096] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation.
Collapse
Affiliation(s)
- Khalid Shah
- Stem Cell Therapeutics and Imaging Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts (K.S.)
| |
Collapse
|
20
|
Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin Y, Gullotti D, Pedone M, Buaron N, Liu A, Wilson DR, Hansen SK, Rodriguez FJ, Gao GD, DiMeco F, Brem H, Olivi A, Tyler B, Green JJ. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS NANO 2015; 9:1236-49. [PMID: 25643235 PMCID: PMC4342728 DOI: 10.1021/nn504905q] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Stephany Yi Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Kristen Lynn Kozielski
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yuan Wang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Yike Jin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David Gullotti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Mariangela Pedone
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Nitsa Buaron
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical Engineering, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David R. Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sarah K. Hansen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Fausto J. Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Francesco DiMeco
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Address correspondence to ,
| | - Jordan J. Green
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Material Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Address correspondence to ,
| |
Collapse
|
21
|
Abstract
Stem cell-based therapeutic strategies have emerged as very attractive treatment options over the past decade. Stem cells are now being utilized as delivery vehicles especially in cancer therapy to deliver a number of targeted proteins and viruses. This chapter aims to shed light on numerous studies that have successfully employed these strategies to target various cancer types with a special emphasis on numerous aspects that are critical to the success of future stem cell-based therapies for cancer.
Collapse
|
22
|
Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Potter DM, Connelly AK, Dibridge SA, Whiteside TL, Okada H. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol 2014; 32:2050-8. [PMID: 24888813 DOI: 10.1200/jco.2013.54.0526] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Diffuse brainstem gliomas (BSGs) and other high-grade gliomas (HGGs) of childhood carry a dismal prognosis despite current treatments, and new therapies are needed. Having identified a series of glioma-associated antigens (GAAs) commonly overexpressed in pediatric gliomas, we initiated a pilot study of subcutaneous vaccinations with GAA epitope peptides in HLA-A2-positive children with newly diagnosed BSG and HGG. PATIENTS AND METHODS GAAs were EphA2, interleukin-13 receptor alpha 2 (IL-13Rα2), and survivin, and their peptide epitopes were emulsified in Montanide-ISA-51 and given every 3 weeks with intramuscular polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose for eight courses, followed by booster vaccinations every 6 weeks. Primary end points were safety and T-cell responses against vaccine-targeted GAA epitopes. Treatment response was evaluated clinically and by magnetic resonance imaging. RESULTS Twenty-six children were enrolled, 14 with newly diagnosed BSG treated with irradiation and 12 with newly diagnosed BSG or HGG treated with irradiation and concurrent chemotherapy. No dose-limiting non-CNS toxicity was encountered. Five children had symptomatic pseudoprogression, which responded to dexamethasone and was associated with prolonged survival. Only two patients had progressive disease during the first two vaccine courses; 19 had stable disease, two had partial responses, one had a minor response, and two had prolonged disease-free status after surgery. Enzyme-linked immunosorbent spot analysis in 21 children showed positive anti-GAA immune responses in 13: to IL-13Rα2 in 10, EphA2 in 11, and survivin in three. CONCLUSION GAA peptide vaccination in children with gliomas is generally well tolerated and has preliminary evidence of immunologic and clinical responses. Careful monitoring and management of pseudoprogression is essential.
Collapse
Affiliation(s)
- Ian F Pollack
- All authors: University of Pittsburgh, Pittsburgh, PA.
| | | | | | | | | | | | | | | | | | - Hideho Okada
- All authors: University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
23
|
Abstract
Despite dramatic advances in surgical techniques, imaging and adjuvant radiotherapy or chemotherapy, the prognosis for patients with malignant glial tumors remains dismal. Based on the current knowledge regarding immune responses in the healthy CNS and glioma-bearing hosts, this review discusses dendritic cell-based immunotherapeutic approaches for malignant gliomas and the relevance of recent clinical trials and their outcomes. It is now recognized that the CNS is not an immunologically tolerated site and clearance of arising glioma cells is a routine physiologic function of the normal, noncompromised immune system. To escape from immune surveillance, however, clinically apparent gliomas develop complex mechanisms that suppress tumoricidal immune responses. Although the use of dendritic cells for the treatment of glioma patients may be the most appropriate approach, an effective treatment paradigm for these tumors may eventually require the use of several types of treatment. Additionally, given the heterogeneity of this disease process and an immune-refractory tumor cell population, the series use of rational multiple modalities that target disparate tumor characteristics may be the most effective therapeutic strategy to treat malignant gliomas.
Collapse
Affiliation(s)
- Yasuharu Akasaki
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Suite 800 East, 8631 West 3 Street, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
24
|
Pollack IF, Jakacki RI, Butterfield LH, Okada H. Ependymomas: development of immunotherapeutic strategies. Expert Rev Neurother 2013; 13:1089-98. [PMID: 24117271 PMCID: PMC3972122 DOI: 10.1586/14737175.2013.840420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ependymomas are among the most challenging childhood brain tumors. Although 50-70% of ependymomas are cured with surgery and irradiation, a significant percentage of tumors recur. Ependymomas that are not amenable to complete resection at diagnosis have a particularly poor prognosis, and the vast majority of affected children experience tumor recurrence. Although transient responses have been observed in recurrent tumors treated with re-irradiation and several chemotherapy regimens, long-term disease control is rarely achieved. Children with recurrent disease commonly experience cumulative neurological morbidity from repeated surgical and adjuvant therapy interventions and almost universally succumb to refractory tumor progression. Accordingly, conceptually new treatment approaches are needed, both to decrease the risk of tumor recurrence and to enhance disease control in those children who experience recurrent disease. This article reviews the current application of risk-based treatment stratification at diagnosis, the rationale for exploring the role of novel therapeutic strategies such as immunotherapy at recurrence and the concept behind a vaccine-based trial for these tumors.
Collapse
Affiliation(s)
- Ian F. Pollack
- Department of Neurosurgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Regina I. Jakacki
- Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa H Butterfield
- Department of Medicine, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hideho Okada
- Department of Neurosurgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Abstract
Drug-delivery carriers have the potential to not only treat but also diagnose many diseases; however, they still lack the complexity of natural-particulate systems. Cell-based therapies using tumor-targeting T cells and tumor-homing mesenchymal stem cells have given researchers a means to exploit the characteristics exhibited by innate-biological entities. Similarly, immune evasion by pathogens has inspired the development of natural polymers to cloak drug carriers. The 'marker-of-self' CD47 protein, which is found ubiquitously on mammalian cell surfaces, has been used for evading phagocyte clearance of drug carriers. This review will focus on the recent progress of drug carriers co-opting the tricks that cells in nature use to hide safely under the radar of the body's innate immune system.
Collapse
|
26
|
Pollack IF, Jakacki RI, Butterfield LH, Okada H. Peptide Vaccine Therapy for Childhood Gliomas. Neurosurgery 2013; 60 Suppl 1:113-9. [DOI: 10.1227/01.neu.0000430769.33467.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Khan-Farooqi HR, Prins RM, Liau LM. Tumor immunology, immunomics and targeted immunotherapy for central nervous system malignancies. Neurol Res 2013; 27:692-702. [PMID: 16197806 DOI: 10.1179/016164105x49490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Although the brain was traditionally considered as 'immunologically privileged', recent findings have implied an involvement of immune mechanisms in neurological disease and illness, including central nervous system (CNS) malignancies. In this review, we initially focus on aspects of the immune system critical for effective antitumor immunity, as an understanding of normal immunological functions and how they relate to tumor immunology will set a foundation for understanding the unique challenges facing the integration of neuro-oncology and neuroimmunology. We summarize current knowledge of immune responses in the 'immunologically quiescent' brain and its role in tumor immunology. We will then discuss the emerging field of 'immunomics' and recent advances in molecular technologies, such as DNA microarray, which are being applied to brain tumor antigen epitope discovery and patient stratification for brain cancer immunotherapy. This, in turn, should have significant importance for ultimately designing and developing efficient and focused strategies for anticancer immunotherapy. Finally, the current state of immune-based treatment paradigms and future directions will be discussed, paying particular attention to targeted antibody strategies, adoptive cellular immunotherapy, and tumor vaccine approaches that have been studied in clinical trials for CNS neoplasms.
Collapse
Affiliation(s)
- Haumith R Khan-Farooqi
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California 90095-6901, USA
| | | | | |
Collapse
|
28
|
Hu YL, Huang B, Zhang TY, Miao PH, Tang GP, Tabata Y, Gao JQ. Mesenchymal stem cells as a novel carrier for targeted delivery of gene in cancer therapy based on nonviral transfection. Mol Pharm 2012; 9:2698-709. [PMID: 22862421 DOI: 10.1021/mp300254s] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The success of gene therapy relies largely on an effective targeted gene delivery system. Till recently, more and more targeted delivery carriers, such as liposome, nanoparticles, microbubbles, etc., have been developed. However, the clinical applications of these systems were limited for their several disadvantages. Therefore, design and development of novel drug/gene delivery vehicles became a hot topic. Cell-based delivery systems are emerging as an alternative for the targeted delivery system as we described previously. Mesenchymal stem cells (MSCs) are an attractive cell therapy carrier for the delivery of therapeutic agents into tumor sites mainly for their tumor-targeting capacities. In the present study, a nonviral vector, PEI(600)-Cyd, prepared by linking low molecular weight polyethylenimine (PEI) and β-cyclodextrin (β-CD), was used to introduce the therapeutical gene, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), to MSCs. Meanwhile, the characterization, transfection efficiency, cytotoxicity, cellular internalization, and its mechanism of this nonviral vector were evaluated. The in vitro expression of TRAIL from MSCs-TRAIL was demonstrated by both enzyme-linked immunosorbent assay and Western blot analysis. The lung tumor homing ability of MSCs was further confirmed by the in vitro and in vivo model. Moreover, the therapeutic effects as well as the safety of MSCs-TRAIL on lung metastases bearing C57BL/6 mice and normal C57BL/6 mice were also demonstrated. Our results supported both the effectiveness of nonviral vectors in transferring the therapeutic gene to MSCs and the feasibility of using MSCs as a targeted gene delivery carrier, indicating that MSCs could be a promising tumor target delivery vehicle in cancer gene therapy based on nonviral gene recombination.
Collapse
Affiliation(s)
- Yu-Lan Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Syed ON, Mandigo CE, Killory BD, Canoll P, Bruce JN. Cancer-testis and melanocyte-differentiation antigen expression in malignant glioma and meningioma. J Clin Neurosci 2012; 19:1016-21. [DOI: 10.1016/j.jocn.2011.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 10/18/2011] [Indexed: 11/27/2022]
|
30
|
Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 2012; 64:739-48. [PMID: 21740940 DOI: 10.1016/j.addr.2011.06.010] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 12/22/2022]
Abstract
Recent pre-clinical and clinical studies have shown that stem cell-based therapies hold tremendous promise for the treatment of human disease. Mesenchymal stem cells (MSC) are emerging as promising anti-cancer agents which have an enormous potential to be utilized to treat a number of different cancer types. MSC have inherent tumor-trophic migratory properties, which allows them to serve as vehicles for delivering effective, targeted therapy to isolated tumors and metastatic disease. MSC have been readily engineered to express anti-proliferative, pro-apoptotic, anti-angiogenic agents that specifically target different cancer types. Many of these strategies have been validated in a wide range of studies evaluating treatment feasibility or efficacy, as well as establishing methods for real-time monitoring of stem cell migration in vivo for optimal therapy surveillance and accelerated development. This review aims to provide an in depth status of current MSC-based cancer therapies, as well as the prospects for their clinical translation.
Collapse
|
31
|
Long Q, Liu W, Zhong J, Yi X, Liu Y, Liu Y, Yang Y, Han R, Fei Z. The tropism of neurally differentiated bone marrow stromal cells towards C6 glioma. Neurosci Lett 2011; 504:135-140. [DOI: 10.1016/j.neulet.2011.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/06/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
|
32
|
Stübiger N, Winterhalter S, Pleyer U, Doycheva D, Zierhut M, Deuter C. [Janus-faced?: Effects and side-effects of interferon therapy in ophthalmology]. Ophthalmologe 2011; 108:204-12. [PMID: 21350868 DOI: 10.1007/s00347-010-2261-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Interferon alpha (IFN-α) and interferon beta (IFN-β) are naturally occurring cytokines, which belong to the type I interferons and share the same receptor leading to very similar therapeutic effects. The immunomodulatory effect of type I interferons includes modulation of antibody production, inhibition of lymphocyte proliferation, inhibition of delayed-type hypersensitivity and enhancement of T-cell and NK-cell cytotoxicity. An increasing number of open clinical studies and case reports have demonstrated the efficacy of IFN-α for severe ocular inflammation in patients with Behçet's disease and of interferon-β, which has been used mainly for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- N Stübiger
- Augenklinik, Charite Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland.
| | | | | | | | | | | |
Collapse
|
33
|
Jia W, Jackson-Cook C, Graf MR. Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol 2010; 223:20-30. [PMID: 20452681 PMCID: PMC2883008 DOI: 10.1016/j.jneuroim.2010.03.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/19/2010] [Accepted: 03/15/2010] [Indexed: 12/31/2022]
Abstract
In rats bearing an intracranial T9 glioma, immunization with tumor antigens induces myeloid suppressor cells, which express neutrophil (His48) and monocyte (CD11bc) markers, to infiltrate the tumors. The His48(+)/CD11bc(+) cells were not derived from CNS microglia but were hematogenous; suppressed multiple T cell effector functions; and are myeloid-derived suppressor cells (MDSC). The glioma-infiltrating MDSC expressed arginase I, iNOS, indoleamine 2,3-dioxygenase and TGF-beta; however, inhibitor/blocking studies demonstrated that NO production was the primary mechanism of suppression which induced T cell apoptosis. These findings suggest that neuro-immunomodulation by MDSC in rat gliomas maybe mediated by a pathway requiring NO production.
Collapse
Affiliation(s)
- Wentao Jia
- Department of Neurosurgery - Harold F. Young Neurosurgical Center and the Massey Cancer Center, Virginia Commonwealth, P.O. Box 980631, Richmond, VA, 23298-0631, USA
| | - Colleen Jackson-Cook
- Department of Pathology, Virginia Commonwealth University Medical Center, P.O. Box 980662, Richmond, VA, 23298-0662, USA
| | - Martin R. Graf
- Department of Neurosurgery - Harold F. Young Neurosurgical Center and the Massey Cancer Center, Virginia Commonwealth, P.O. Box 980631, Richmond, VA, 23298-0631, USA
| |
Collapse
|
34
|
Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release 2010; 147:154-62. [PMID: 20493219 DOI: 10.1016/j.jconrel.2010.05.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/12/2010] [Indexed: 01/12/2023]
Abstract
The targeting drug delivery systems (TDDS) have attracted extensive attention of researchers in recent years. More and more drug/gene targeted delivery carriers, such as liposome, magnetic nanoparticles, ligand-conjugated nanoparticles, microbubbles, etc., have been developed and under investigation for their application. However, the currently investigated drug/gene carriers have several disadvantages, which limit their future use in clinical practice. Therefore, design and development of novel drug/gene delivery vehicles has been a hot area of research. Recent studies have shown the ability of mesenchymal stem cells (MSCs) to migrate towards and engraft into the tumor sites, which make them a great hope for efficient targeted-delivery vehicles in cancer gene therapy. In this review article, we examine the promising of using mesenchymal stem cells as a targeted-delivery vehicle for cancer gene therapy, and summarize various challenges and concerns regarding these therapies.
Collapse
|
35
|
Wang H, Zhang SY, Wang S, Lu J, Wu W, Weng L, Chen D, Zhang Y, Lu Z, Yang J, Chen Y, Zhang X, Chen X, Xi C, Lu D, Zhao S. REV3L confers chemoresistance to cisplatin in human gliomas: the potential of its RNAi for synergistic therapy. Neuro Oncol 2010; 11:790-802. [PMID: 19289490 DOI: 10.1215/15228517-2009-015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The REV3L gene, encoding the catalytic subunit of human polymerase zeta, plays a significant role in the cytotoxicity, mutagenicity, and chemoresistance of certain tumors. However, the role of REV3L in regulating the sensitivity of glioma cells to chemotherapy remains unknown. In this study, we investigated the expression of the REV3L gene in 10 normal brain specimens and 30 human glioma specimens and examined the value of REV3L as a potential modulator of cellular response to various DNA-damaging agents. Reverse transcriptase PCR/real-time PCR analysis revealed that REV3L was overexpressed in human gliomas compared with normal brain tissues. A glioma cell model with stable overexpression of REV3L was used to probe the role of REV3L in cisplatin treatment; upregulation of REV3L markedly attenuated cisplatin-induced apoptosis of the mitochondrial apoptotic pathway. We therefore assessed the REV3L-targeted treatment modality that combines suppression of REV3L expression using RNA interference (RNAi) with the cytotoxic effects of DNA-damaging agents. Downregulation of REV3L expression significantly enhanced the sensitivity of glioma cells to cisplatin, as evidenced by the increased apoptosis rate and marked alterations in the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl) and proapoptotic Bcl-2-associated x protein (Bax) expression levels, and reduced mutation frequencies in surviving glioma cells. These results suggest that REV3L may potentially contribute to gliomagenesis and play a crucial role in regulating cellular response to the DNA cross-linking agent cisplatin. Our findings indicate that RNAi targeting REV3L combined with chemotherapy has synergistic therapeutic effects on glioma cells, which warrants further investigation as an effective novel therapeutic regimen for patients with this malignancy.
Collapse
Affiliation(s)
- Huibo Wang
- Department of Neurological Surgery, Brain Tumor Research Center, First Affliated Hospital, Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Several immunostimulant approaches have been studied in the treatment of gliomas. The advent of recombinant DNA technology led to a nonspecific immunostimulation via systemic administration of cytokines. Recently, in attempts to more closely mimic their natural activity, cytokines have been delivered by implanting genetically transduced cells or by using in vivo gene transfer techniques. The latest efforts have focused on immunostimulatory agents that act directly on antigen-presenting cells and effector cells of the immune system via pattern recognition receptors. Combining these strategies with more than one mode of immunotherapy may provide better clinical results.
Collapse
Affiliation(s)
- Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, 400 Parnassus Avenue, A808, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Abstract
T-cell mediated immunotherapy is a conceptually attractive treatment option to envisage for glioma, since T lymphocytes can actively seek out neoplastic cells in the brain, and they have the potential to safely and specifically eliminate tumor. Some antigenic targets on glioma cells are already defined, and we can be optimistic that more will be discovered from progress in T-cell epitope identification and gene expression profiling of brain tumors. In parallel, advances in immunology (regional immunology, neuroimmunology, tumor immunology) now equip us to build upon the results from current immunotherapy trials in which the safety and feasibility of brain tumor immunotherapy have already been confirmed. We can now look to the next phase of immunotherapy, in which we must harness the most promising basic science advances and existing clinical expertise, and apply these to randomized clinical trials to determine the real clinical impact and applicability of these approaches for treating patients with currently incurable malignant brain tumors.
Collapse
Affiliation(s)
- Erwin G. Meir
- School of Medicine, Emory University, Clifton Road 1365C, Atlanta, 30322 U.S.A
| |
Collapse
|
38
|
Kushen MC, Sonabend AM, Lesniak MS. Current immunotherapeutic strategies for central nervous system tumors. Surg Oncol Clin N Am 2007; 16:987-1004, xii. [PMID: 18022555 PMCID: PMC2173874 DOI: 10.1016/j.soc.2007.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunotherapy has emerged as a promising tool in the management of malignant central nervous system tumors. Despite improvement in patient survival, traditional approaches, which consist mostly of surgery, radiotherapy, and chemotherapy, have been largely unsuccessful in permanently controlling these aggressive tumors. Immunotherapeutic strategies offer not only a novel approach but also an advantage in a way other modalities have been failing. Specifically, the capabilities of the immune system to recognize altered cells while leaving normal cells intact offer tremendous advantage over the conventional therapeutic approaches. This article summarizes our current understanding of immunotherapeutic treatment modalities used in clinical trials for management of malignant central nervous system tumors.
Collapse
Affiliation(s)
- Medina C. Kushen
- Neurosurgery Resident, Section of Neurosurgery, The University of Chicago, Chicago, IL, USA
| | - Adam M. Sonabend
- Research Associate, Section of Neurosurgery, The University of Chicago, Chicago, IL, USA
| | - Maciej S. Lesniak
- Director, Neurosurgical Oncology and The University of Chicago Brain Tumor Center, The University of Chicago Section of Neurosurgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Suchkov SV, Petrunin DD, Kostalevskaya AV, Kachkov IA, Elbeik T, Matsuura E, Paltsev MA. Cancer-associated immune-mediated syndromes: Pathogenic values and clinical implementation. Biomed Pharmacother 2007; 61:323-37. [PMID: 17656060 DOI: 10.1016/j.biopha.2007.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/30/2022] Open
Abstract
The ability of tumors to provoke formation of cancer-associated secondary immunodeficiency (CASID) with predominant suppression of CMI and cancer-associated secondary immunodeficiency with clinical autoimmunity syndrome (CASICAS) with triggering of a set of the autoimmune deviations is appearing to be a key event in the restriction of hosts' anti-tumor immunity. Earlier the existence of the above-mentioned syndromes was demonstrated in BCC and GBM patients. In order to reach a point where immunological phenotypes in GBM and BCC can be clarified clinically and, partly, pathogenically, we have conducted a series of studies of typical and atypical types of immune responsiveness in patients with GBM and BCC. For GBM and BCC three scenarios of the involvement of the immune responsiveness have been established in a series of our studies, i.e., (i) malignancy with no immunopathology, (ii) malignancy as CASID, and (iii) malignancy as CASICAS. All of those scenarios demonstrated significant differences in their immune-mediated manifestations which, in turn, were proven to reveal close associative relationships with a specific clinicopathologic type and clinical manifestations of the tumor. CASID and CASICAS share two common features, i.e., (i) signs of immunodeficiency and (ii) a tandem of the deviations within the adaptive and innate links of the host immune responsiveness. At the same time, CASID and CASICAS are distinct pathogenically and clinically, and in terms of depth of the immune deviations observed, CASID patients manifest a breakage in both links, whereas in CASICAS patients, a breakage in the adaptive link would dominate. To get these differences clarified, we summarized major types of the immune imbalances and sets of clinical and clinicopathologic manifestations to illustrate the above-mentioned features in CASID and CASICAS patients. There are distinct close correlations between clinicopathologic features of the disease course and sets of the immune-mediated imbalances in patients harboring the tumors. The latter implicates a panel of the new immunodiagnostic and immunoprognostic criteria for patients with solid tumors, i.e., BCC, MCC and GB, which is of great value for clinical practice. In particular, the blood levels of some of the immunocompetent cells, state of their functional activity, serum titers of the antigenic markers and autoantibodies, apoptotic parameters, and others may be accepted as additional and clinically informative criteria to be implemented for immunological monitoring and immunotherapy of patients with solid tumors.
Collapse
Affiliation(s)
- S V Suchkov
- I.M. Sechenov Moscow Medical Academy (MMA), Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Plskova J, Greiner K, Forrester JV. Interferon-alpha as an effective treatment for noninfectious posterior uveitis and panuveitis. Am J Ophthalmol 2007; 144:55-61. [PMID: 17601428 DOI: 10.1016/j.ajo.2007.03.050] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 03/24/2007] [Accepted: 03/30/2007] [Indexed: 12/30/2022]
Abstract
PURPOSE Several studies have shown the capacity of interferon-alpha (IFN-alpha) to control ocular Behçet disease. The authors aimed to determine whether IFN-alpha was effective in treating patients with severe, refractory sight-threatening intraocular inflammation (uveitis) from a wider range of causes, including Behçet disease. DESIGN Prospective, interventional case series. METHODS Twelve patients with sight-threatening uveitis that failed to respond to one or more immunosuppressive regimens were enrolled to this study. Recombinant human IFN-alpha-2b was administered subcutaneously daily, and the dose was adjusted according to the clinical response. Main outcome measures were visual acuity, clinical activity of uveitis (including binocular indirect ophthalmoscopy [BIO] score and presence or absence of macular edema), and adverse effects of the treatment. RESULTS The mean observation period was 11 months (range, one to 29 months). A positive clinical response was observed in 83% of patients. Median visual acuity improved from 0.54 to 0.2 (logarithm of the minimum angle of resolution units; P < .001) and median BIO score decreased from 1.0 to 0.5 (P < .05) within one month of treatment. Macular edema, if present, resolved in all patients within days of treatment. The main adverse events were tiredness, lymphopenia, flu-like symptoms, and transient increase of liver enzymes. Weight loss occurred in four patients. Four patients experienced depression, one of them attempting suicide. Three patients experienced typical features of IFN-alpha-associated retinopathy, which resolved on reducing the dose. CONCLUSIONS IFN-alpha seems to have significant potential in treatment of severe, sight-threatening refractory uveitis from a variety of causes. A range of adverse events, including IFN-alpha-associated retinopathy, may occur and could limit the use of this immunomodulatory drug.
Collapse
Affiliation(s)
- Jarka Plskova
- Department of Ophthalmology, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | |
Collapse
|
41
|
Yang MY, Zetler PM, Prins RM, Khan-Farooqi H, Liau LM. Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications. Expert Rev Neurother 2007; 6:1481-94. [PMID: 17078788 DOI: 10.1586/14737175.6.10.1481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malignant gliomas are the most common type of primary brain tumor and are in great need of novel therapeutic approaches. Advances in treatment have been very modest, significant improvement in survival has been lacking for many decades and prognosis remains dismal. Despite 'gross total' surgical resections and currently available radio-chemotherapy, malignant gliomas inevitably recur due to reservoirs of notoriously invasive tumor cells that infiltrate adjacent and nonadjacent areas of normal brain parenchyma. In principle, the immune system is uniquely qualified to recognize and target these infiltrative pockets of tumor cells, which have generally eluded conventional treatment approaches. In the span of the last 10 years, our understanding of the cancer-immune system relationship has increased exponentially, and yet, we are only beginning to tease apart the intricacies of the CNS and immune cell interactions. This article reviews the complex associations of the immune system with brain tumors. We provide an overview of currently available treatment options for malignant gliomas, existing gaps in our knowledge of brain tumor immunology, and molecular techniques and targets that might be exploited for improved patient stratification and design of 'custom immunotherapeutics'. We will also examine major new immunotherapy approaches that are being actively investigated to treat patients with malignant glioma, and identify some current and future research priorities in this area.
Collapse
Affiliation(s)
- Meng-Yin Yang
- Division of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-6901, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Primary brain tumors, including gliomas and medulloblastomas, often represent the most devastating and difficult-to-treat tumors, and are thought to arise from glial cells and/or their precursors or the external granule cell layer, respectively. The majority of genetic alterations characteristic of the human brain tumors are thought to occur in genes encoding proteins involved in signal transduction or cell cycle regulation. Accurate recapitulation of these genetic alterations using genetically engineered mouse models allows for in vivo modeling of brain tumors with similar histopathology, etiology, and biology. These mouse models, in turn, increase our understanding of brain tumor initiation, formation, progression, and metastasis, providing an experimental system to discover novel therapeutic targets and test various therapeutic agents.
Collapse
Affiliation(s)
- Elena I Fomchenko
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
43
|
Terzis AJA, Niclou SP, Rajcevic U, Danzeisen C, Bjerkvig R. Cell therapies for glioblastoma. Expert Opin Biol Ther 2006; 6:739-49. [PMID: 16856796 DOI: 10.1517/14712598.6.8.739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Malignant gliomas, including the most devastating type, glioblastoma multiforme (GBM), are characterised by their local growth and aggressive infiltration of the normal brain. GBMs result in a profound disability, leading to death in almost all cases. There has been little improvement in outcome despite intensive clinical and laboratory research during recent decades. Interestingly, many researchers have been successful in treating GBM models in animals, but the success has been limited when new treatment principles have been translated into the clinic. One reason for this failure is the lack of appropriate animal models that reflect the behaviour of human GBMs. Therapeutic progress has also been hindered by the limited delivery of effective therapeutic compounds to an extremely heterogenic tumour cell population. This article discusses the present use and limitations of preclinical animal models to study glioma growth and progression. In addition, it focuses on the potential use of cell-based therapies for the treatment of GBMs. This includes aspects of gene therapy, stem cell therapy and immunotherapy. Several of these treatment modalities use the principle of transplanting cells or compounds that either directly or indirectly show therapeutic efficacy. Many of these principles depend on an increased biological knowledge of gliomas. The development of new therapeutic principles based on such knowledge may finally provide glioma patients with an improved survival.
Collapse
Affiliation(s)
- A Jorge A Terzis
- National Department of Neurosurgery, Hospital Center Luxembourg, 4 Rue Barblé, L-1210, Luxembourg.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Gene therapy is a potentially useful approach in the treatment of human brain tumors, which are notoriously refractory to conventional approaches. Most human clinical trials to date have been unsuccessful in terms of improving patient outcome. Recent improvements in viral vectors, the development of stem cell technology, and increased understanding of the mechanism of action of therapeutic transgenes provide hope that the next generation of gene therapeutics may show increased efficacy in treatment of this devastating disease.
Collapse
Affiliation(s)
- S E Lawler
- Department of Neurological Surgery, The Dardinger Family Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, 43210, USA
| | | | | |
Collapse
|