1
|
Ash K, Dev A. Harnessing Nanotechnology in HIV Therapy: Exploring Molecular Pathogenesis and Treatment Strategies with Special Reference to Chemotherapy and Immunotherapy. Microb Pathog 2025; 204:107625. [PMID: 40268149 DOI: 10.1016/j.micpath.2025.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Human immunodeficiency virus (HIV) continues to be a global threat, contributing substantially to social and economic burdens worldwide. Synthetic ARV drugs are classified into six different classes viz NRTIs, NNRTIs, PIs, IIs, INSTIs, and FIs. Highly active anti-retroviral therapy (HAART) which is a combination of two or more ARV drugs from different classes is gaining immense popularity in the HIV therapy regimen due to its better therapeutic outcome. However, despite its successful endeavor in significant viral suppression, synthetic drugs are associated with numerous adverse effects. To mitigate this issue, scientists are exploring ARV agents derived from various natural sources like plants, and marine organisms that can exhibit potent anti-HIV activity with minimal side effects. Nevertheless, both synthetically and naturally derived ARV agents have failed to exhibit eradication of HIV from latent reservoirs. Henceforth, researchers are shifting their attention towards formulating a drug-encapsulated nano-delivery system to ensure a significant amount of drug delivery into these reservoirs. Additionally, the discovery of a novel HIV vaccine that can induce robust immune responses against multiple HIV strains and facilitate complete removal of the virus before the establishment of a latent reservoir is the need of an hour. Briefly, we discussed various synthetic and natural chemotherapeutic agents along with their specificity and limitations, different drug-delivery devices for ART, immunotherapy, vaccines, and lastly, challenges and strategies associated with vaccine development.
Collapse
Affiliation(s)
- Kaushiki Ash
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| |
Collapse
|
2
|
Larijani MS, Ramezani A, Sadat SM. Updated Studies on the Development of HIV Therapeutic Vaccine. Curr HIV Res 2020; 17:75-84. [PMID: 31210114 DOI: 10.2174/1570162x17666190618160608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Among the various types of pharmaceuticals, vaccines have a special place. However, in the case of HIV, nearly after 40 years of its discovery, an effective vaccine still is not available. The reason lies in several facts mainly the variability and smartness of HIV as well as the complexity of the interaction between HIV and immune responses. A robust, effective, and longterm immunity is undoubtedly what a successful preventive vaccine should induce in order to prevent the infection of HIV. Failure of human trials to this end has led to the idea of developing therapeutic vaccines with the purpose of curing already infected patients by boosting their immune responses against the virus. Nevertheless, the exceptional ability of the virus to escape the immune system based on the genetically diverse envelope and variable protein products have made it difficult to achieve an efficient therapeutic vaccine. OBJECTIVE We aimed at studying and comparing different approaches to HIV therapeutic vaccines. METHODS In this review, we summarized the human trials undergoing on HIV therapeutic vaccination which are registered in the U.S. clinical trial database (clinicaltrials.gov). These attempts are divided into different tables, according to the type of formulation and application in order to classify and compare their results. RESULT/CONCLUSION Among several methods applied in studied clinical trials which are mainly divided into DNA, Protein, Peptide, Viral vectors, and Dendritic cell-based vaccines, protein vaccine strategy is based on Tat protein-induced anti-Tat Abs in 79% HIV patients. However, the studies need to be continued to achieve a durable efficient immune response against HIV-1.
Collapse
Affiliation(s)
- Mona Sadat Larijani
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Hepatitis, AIDS, and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Xiao Z, Juan L, Song Y, Zhijian Z, Jing J, Kun Y, Yuna H, Dongfa D, Lili D, Liuxin T, Fei L, Nan L, Fang Y, Yuying S, Yongzhi X. Evaluation of humoral and cellular immune responses to a DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats. Hum Vaccin Immunother 2016; 11:938-45. [PMID: 25763999 DOI: 10.1080/21645515.2015.1010977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A major challenge in the development of effective therapies for rheumatoid arthritis (RA) is finding a method for the specific inhibition of the inflammatory disease processes without the induction of generalized immunosuppression. Of note, the development of therapeutic DNA vaccines and boosters that may restore immunological tolerance remains a high priority. pcDNA-CCOL2A1 is a therapeutic DNA vaccine encoding chicken type II collagen(CCII). This vaccine was developed by our laboratory and has been shown to exhibit efficacy comparable to that of the current "gold standard" treatment, methotrexate (MTX). Here, we used enzyme-linked immunosorbent assays with anti-CII IgG antibodies, quantified the expression levels of Th1, Th2, and Th3 cytokines, and performed flow cytometric analyses of different T-cell subsets, including Th1, Th2, Th17, Tc, Ts, Treg, and CD4(+)CD29(+)T cells to systemically evaluate humoral and cellular immune responses to pcDNA-CCOL2A1 vaccine in normal rats. Similar to our observations at maximum dosage of 3 mg/kg, vaccination of normal rats with 300 μg/kg pcDNA-CCOL2A1 vaccine did not induce the production of anti-CII IgG. Furthermore, no significant changes were observed in the expression levels of pro-inflammatory cytokines interleukin (IL)-1α, IL-5, IL-6, IL-12(IL-23p40), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, regulated on activation in normal T-cell expressed and secreted (RANTES), receptor activator for nuclear factor-κB ligand (RANKL), and granulocyte colony-stimulating factor (G-CSF) or anti-inflammatory cytokines IL-4 and IL-10 in vaccinated normal rats relative to that in controls(P > 0.05). However, transforming growth factor (TGF)-β levels were significantly increased on days 10 and 14, while interferon (IFN)-γ and tumor necrosis factor (TNF)-α levels were significantly decreased on days 28 and 35 after vaccination(P < 0.05). Similarly, there were no significant differences in the percentages of Tc, Ts, Th1/Th2, and Th17 cells between the 2 groups(P > 0.05), with the exception of Treg cells, which were significantly reduced on days 14 and 21 after vaccination (P < 0.05), and CD4(+)CD29(+)T cells, which were significantly increased on days 7 and 14 after vaccination(P < 0.05).Taken together, these results suggested that pcDNA-CCOL2A1 vaccine did not markedly affect the balance of immune system components in vaccinated normal rats, indicating that this DNA vaccine may have clinical applications in the treatment of RA.
Collapse
Affiliation(s)
- Zhao Xiao
- a Department of Immunology and National Center for Biomedicine Analysis ; Beijing 307 Hospital Affiliated to Academy of Military Medical Sciences ; Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Stüve O, Cravens PD, Eagar TN. DNA-based vaccines: the future of multiple sclerosis therapy? Expert Rev Neurother 2014; 8:351-60. [DOI: 10.1586/14737175.8.3.351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: current progress. Clin Infect Dis 2011; 53:296-302. [PMID: 21765081 DOI: 10.1093/cid/cir334] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It was discovered almost 20 years ago that plasmid DNA, when injected into the skin or muscle of mice, could induce immune responses to encoded antigens. Since that time, there has since been much progress in understanding the basic biology behind this deceptively simple vaccine platform and much technological advancement to enhance immune potency. Among these advancements are improved formulations and improved physical methods of delivery, which increase the uptake of vaccine plasmids by cells; optimization of vaccine vectors and encoded antigens; and the development of novel formulations and adjuvants to augment and direct the host immune response. The ability of the current, or second-generation, DNA vaccines to induce more-potent cellular and humoral responses opens up this platform to be examined in both preventative and therapeutic arenas. This review focuses on these advances and discusses both preventive and immunotherapeutic clinical applications.
Collapse
Affiliation(s)
- Bernadette Ferraro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
6
|
ELISPOT analysis of a new CTL based DNA vaccine for HIV-1 using GM-CSF in DNA prime/peptide boost strategy: GM-CSF induced long-lived memory responses. Immunol Lett 2011; 140:14-20. [DOI: 10.1016/j.imlet.2011.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/15/2011] [Accepted: 05/15/2011] [Indexed: 11/19/2022]
|
7
|
Kim JM, Han SH. Immunotherapeutic restoration in HIV-infected individuals. Immunotherapy 2011; 3:247-67. [PMID: 21322762 DOI: 10.2217/imt.10.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
While the development of combined active antiretroviral therapy (cART) has dramatically improved life expectancies and quality of life in HIV-infected individuals, long-term clinical problems, such as metabolic complications, remain important constraints of life-long cART. Complete immune restoration using only cART is normally unattainable even in cases of sufficient plasma viral suppression. The need for immunologic adjuncts that complement cART remains, because while cART alone may result in the complete recovery of peripheral net CD4+ T lymphocytes, it may not affect the reservoir of HIV-infected cells. Here, we review current immunotherapies for HIV infection, with a particular emphasis on recent advances in cytokine therapies, therapeutic immunization, monoclonal antibodies, immune-modulating drugs, nanotechnology-based approaches and radioimmunotherapy.
Collapse
Affiliation(s)
- June Myung Kim
- Department of Internal Medicine & AIDS Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea.
| | | |
Collapse
|
8
|
Donkuru M, Badea I, Wettig S, Verrall R, Elsabahy M, Foldvari M. Advancing nonviral gene delivery: lipid- and surfactant-based nanoparticle design strategies. Nanomedicine (Lond) 2010; 5:1103-27. [DOI: 10.2217/nnm.10.80] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene therapy is a technique utilized to treat diseases caused by missing, defective or overexpressing genes. Although viral vectors transfect cells efficiently, risks associated with their use limit their clinical applications. Nonviral delivery systems are safer, easier to manufacture, more versatile and cost effective. However, their transfection efficiency lags behind that of viral vectors. Many groups have dedicated considerable effort to improve the efficiency of nonviral gene delivery systems and are investigating complexes composed of DNA and soft materials such as lipids, polymers, peptides, dendrimers and gemini surfactants. The bottom-up approach in the design of these nanoparticles combines components essential for high levels of transfection, biocompatibility and tissue-targeting ability. This article provides an overview of the strategies employed to improve in vitro and in vivo transfection, focusing on the use of cationic lipids and surfactants as building blocks for nonviral gene delivery systems.
Collapse
Affiliation(s)
- McDonald Donkuru
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Ildiko Badea
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Shawn Wettig
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Ronald Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Mahmoud Elsabahy
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
9
|
Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 2010; 28:1962-74. [PMID: 20188252 DOI: 10.1016/j.vaccine.2009.10.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that therapeutic immunization by intramuscular injection of optimized plasmid DNAs encoding SIV antigens effectively induces immune responses able to reduce viremia in antiretroviral therapy (ART)-treated SIVmac251-infected Indian rhesus macaques. We subjected such therapeutically immunized macaques to a second round of therapeutic vaccination using a combination of plasmids expressing SIV genes and the IL-15/IL-15 receptor alpha as molecular adjuvant, which were delivered by the more efficacious in vivo constant-current electroporation. A very strong induction of antigen-specific responses to Gag, Env, Nef, and Pol, during ART (1.2-1.6% of SIV-specific T cells in the circulating T lymphocytes) was obtained with the improved vaccination method. Immunological responses were characterized by the production of IFN-gamma, IL-2, and TNF-alpha either alone, or in combination as double or triple cytokine positive multifunctional T cells. A significant induction of CD4(+) T cell responses, mainly targeting Gag, Nef, and Pol, as well as of CD8(+) T cells, mainly targeting Env, was found in both T cells with central memory and effector memory markers. After release from ART, the animals showed a virological benefit with a further approximately 1 log reduction in viremia. Vaccination with plasmid DNAs has several advantages over other vaccine modalities, including the possibility for repeated administration, and was shown to induce potent, efficacious, and long-lasting recall immune responses. Therefore, these data support the concept of adding DNA vaccination to the HAART regimen to boost the HIV-specific immune responses.
Collapse
|
10
|
Abstract
Dendritic cells (DC) have profound abilities to induce and coordinate T-cell immunity. This makes them ideal biological agents for use in immunotherapeutic strategies to augment T-cell immunity to HIV infection. Current clinical trials are administering DC-HIV antigen preparations carried out ex vivo as proof of principle that DC immunotherapy is safe and efficacious in HIV-infected patients. These trials are largely dependent on preclinical studies that will provide knowledge and guidance about the types of DC, form of HIV antigen, method of DC maturation, route of DC administration, measures of anti-HIV immune function and ultimately control of HIV replication. Additionally, promising immunotherapy approaches are being developed based on targeting of DC with HIV antigens in vivo. The objective is to define a safe and effective strategy for enhancing control of HIV infection in patients undergoing antiretroviral therapy.
Collapse
Affiliation(s)
- C R Rinaldo
- Department of Infectious Diseases, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|