1
|
Abstract
Inflammatory arthritis (IA) is a common disease that affects millions of individuals worldwide. Proinflammatory events during IA pathogenesis are well studied; however, loss of protective immunity remains underexplored. Earlier, we reported that 14-3-3zeta (ζ) has a role in T-cell polarization and interleukin (IL)-17A signal transduction. Here, we demonstrate that 14-3-3ζ knockout (KO) rats develop early-onset severe arthritis in two independent models of IA, pristane-induced arthritis and collagen-induced arthritis. Arthritic 14-3-3ζ KO animals showed an increase in bone loss and immune cell infiltration in synovial joints. Induction of arthritis coincided with the loss of anti-14-3-3ζ antibodies; however, rescue experiments to supplement the 14-3-3ζ antibody by passive immunization did not suppress arthritis. Instead, 14-3-3ζ immunization during the presymptomatic phase resulted in significant suppression of arthritis in both wild-type and 14-3-3ζ KO animals. Mechanistically, 14-3-3ζ KO rats exhibited elevated inflammatory gene signatures at the messenger RNA and protein levels, particularly for IL-1β. Furthermore, the immunization with recombinant 14-3-3ζ protein suppressed IL-1β levels, significantly increased anti-14-3-3ζ antibody levels and collagen production, and preserved bone quality. The 14-3-3ζ protein increased collagen expression in primary rat mesenchymal cells. Together, our findings indicate that 14-3-3ζ causes immune suppression and extracellular remodeling, which lead to a previously unrecognized IA-suppressive function.
Collapse
|
2
|
Liu Y, Zhang Y, Zheng X, Zhang X, Wang H, Li Q, Yuan K, Zhou N, Yu Y, Song N, Fu J, Min W. Gene silencing of indoleamine 2,3-dioxygenase 2 in melanoma cells induces apoptosis through the suppression of NAD+ and inhibits in vivo tumor growth. Oncotarget 2017; 7:32329-40. [PMID: 27058624 PMCID: PMC5078016 DOI: 10.18632/oncotarget.8617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/14/2016] [Indexed: 01/23/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 2 (IDO2) is a newly discovered enzyme that catalyzes the initial and rate-limiting step in the degradation of tryptophan. As a homologous protein of IDO1, IDO2 plays an inhibitory role in T cell proliferation, and it is essential for regulatory T cell (Treg) generation in healthy conditions. Little is known about the immune-independent functions of IDO2 relevant to its specific contributions to physiology and pathophysiology in cancer cells. The purpose of this study was to assess the impact of IDO2 gene silencing as a way to inhibit B16-BL6 cancer cells in a murine model. Here, for the first time, we show that knockdown of IDO2 using small interfering RNA (siRNA) inhibits cancer cell proliferation, arrests cell cycle in G1, induces greater cell apoptosis, and reduces cell migration in vitro. Knockdown of IDO2 decreased the generation of nicotinamide adenine dinucleotide (NAD+) while increasing the generation of reactive oxygen species (ROS). We further demonstrate that cell apoptosis, induced by IDO2 downregulation, can be weakened by addition of exogenous NAD+, suggesting a novel mechanism by which IDO2 promotes tumor growth through its metabolite product NAD+. In addition to in vitro findings, we also demonstrate that IDO2 silencing in tumor cells using short hairpin RNA (shRNA) delayed tumor formation and arrested tumor growth in vivo. In conclusion, this study demonstrates a new non-immune-associated mechanism of IDO2 in vitro and IDO2 expression in B16-BL6 cells contributes to cancer development and progression. Our research provides evidence of a novel target for gene silencing that has the potential to enhance cancer therapy.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi University of Technology, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,Department of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Yujuan Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Xiufen Zheng
- Department of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Xusheng Zhang
- Department of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Hongmei Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Qin Li
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Keng Yuan
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjing Zhou
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanrong Yu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Na Song
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Jiamin Fu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Weiping Min
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,Department of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Hansson C, Schön K, Kalbina I, Strid Å, Andersson S, Bokarewa MI, Lycke NY. Feeding transgenic plants that express a tolerogenic fusion protein effectively protects against arthritis. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1106-15. [PMID: 26403330 PMCID: PMC11389156 DOI: 10.1111/pbi.12479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/27/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
Although much explored, oral tolerance for treatment of autoimmune diseases still awaits the establishment of novel and effective vectors. We investigated whether the tolerogenic CTA1(R7K)-COL-DD fusion protein can be expressed in edible plants, to induce oral tolerance and protect against arthritis. The fusion protein was recombinantly expressed in Arabidopsis thaliana plants, which were fed to H-2(q) -restricted DBA/1 mice to assess the preventive effect on collagen-induced arthritis (CIA). The treatment resulted in fewer mice exhibiting disease and arthritis scores were significantly reduced. Immune suppression was evident in treated mice, and serum biomarkers for inflammation as well as anticollagen IgG responses were reduced. In spleen and draining lymph nodes, CD4(+) T-cell responses were reduced. Concomitant with a reduced effector T-cell activity with lower IFNγ, IL-13 and IL-17A production, we observed an increase in IL-10 production to recall antigen stimulation in vitro, suggesting reduced Th1, Th2 and Th17 activity subsequent to up-regulated IL-10 and regulatory T-cell (Treg) functions. This study shows that edible plants expressing a tolerogen were effective at stimulating CD4 T-cell tolerance and in protecting against CIA disease. Our study conveys optimism as to the potential of using edible plants for oral treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Charlotta Hansson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Irina Kalbina
- Örebro Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Åke Strid
- Örebro Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Sören Andersson
- Örebro Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
- Department of Laboratory Medicine, Örebro University hospital, Örebro, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Nils Y Lycke
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Abstract
Autoimmune diseases are common chronic disorders that not only have a major impact on the quality of life but are also potentially life-threatening. Treatment modalities that are currently favored have conferred significant clinical benefits, but they may have considerable side effects. An optimal treatment strategy for autoimmune disease would specifically target disease-associated antigens and limit systemic side effects. Similar to allergen-specific immunotherapy for allergic rhinitis, antigen-specific immunotherapy for autoimmune disease aims to induce immune deviation and promote tolerance to specific antigens. In this review, we present the current status of studies and clinical trials in both human and animal hosts that use antigen-based immunotherapy for autoimmune disease.
Collapse
Affiliation(s)
- Darren Lowell Hirsch
- Division of Allergy and Immunology, North Shore-Long Island Jewish Health System/Hofstra North Shore-LIJ School of Medicine, New Hyde Park, NY, USA
| | - Punita Ponda
- Division of Allergy and Immunology, North Shore-Long Island Jewish Health System/Hofstra North Shore-LIJ School of Medicine, New Hyde Park, NY, USA
| |
Collapse
|
5
|
Rodriguez JP, Murphy MP, Hong S, Madrigal M, March KL, Minev B, Harman RJ, Chen CS, Timmons RB, Marleau AM, Riordan NH. Autologous stromal vascular fraction therapy for rheumatoid arthritis: rationale and clinical safety. Int Arch Med 2012; 5:5. [PMID: 22313603 PMCID: PMC3296619 DOI: 10.1186/1755-7682-5-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/08/2012] [Indexed: 02/08/2023] Open
Abstract
Advancements in rheumatoid arthritis (RA) treatment protocols and introduction of targeted biological therapies have markedly improved patient outcomes, despite this, up to 50% of patients still fail to achieve a significant clinical response. In veterinary medicine, stem cell therapy in the form of autologous stromal vascular fraction (SVF) is an accepted therapeutic modality for degenerative conditions with 80% improvement and no serious treatment associated adverse events reported. Clinical translation of SVF therapy relies on confirmation of veterinary findings in targeted patient populations. Here we describe the rationale and preclinical data supporting the use of autologous SVF in treatment of RA, as well as provide 1, 3, 6, and 13 month safety outcomes in 13 RA patients treated with this approach.
Collapse
|
6
|
Li R, Zheng X, Popov I, Zhang X, Wang H, Suzuki M, Necochea-Campion RD, French PW, Chen D, Siu L, Koos D, Inman RD, Min WP. Gene silencing of IL-12 in dendritic cells inhibits autoimmune arthritis. J Transl Med 2012; 10:19. [PMID: 22289162 PMCID: PMC3293054 DOI: 10.1186/1479-5876-10-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/31/2012] [Indexed: 11/18/2022] Open
Abstract
Background We have previously demonstrated that immune modulation can be accomplished by administration of gene silenced dendritic cells (DC) using siRNA. In this study, we demonstrate the therapeutic utilization of shRNA-modified DC as an antigen-specific tolerogenic vaccine strategy for autoimmune arthritis. Methods A shRNA that specifically targets IL-12 p35 was designed and cloned into a plasmid vectors (IL-12 shRNA). Bone marrow-derived DC from DBA/1 mice were transfected with the IL-12 shRNA construct in vitro. Mice with collagen II (CII)-induced arthritis (CIA) were treated with the modified DCs expressing the shRNA. Recall response and disease progression were assessed. Results After gene silencing of IL-12 in DC, DC were shown to selectively inhibit T cell proliferation on recall responses and in an MLR. In murine CIA, we demonstrated that administration of IL-12 shRNA-expressing DC that were pulsed with CII inhibited progression of arthritis. The therapeutic effects were evidenced by decreased clinical scores, inhibition of inflammatory cell infiltration in the joint, and suppression of T cell and B cell responses to CII. Conclusion We demonstrate a novel tolerance-inducing protocol for the treatment of autoimmune inflammatory joint disease in which the target antigen is known, utilizing DNA-directed RNA interference.
Collapse
Affiliation(s)
- Rong Li
- Institute of Immunomodulation and Immunotherapy, Nanchang University Medical School, Nanchang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zheng X, Suzuki M, Ichim TE, Zhang X, Sun H, Zhu F, Shunnar A, Garcia B, Inman RD, Min W. Treatment of autoimmune arthritis using RNA interference-modulated dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6457-64. [PMID: 20435931 DOI: 10.4049/jimmunol.0901717] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dendritic cells (DCs) have a dual ability to either stimulate or suppress immunity, which is primarily associated with the expression of costimulatory molecules. Ag-loaded DCs have shown encouraging clinical results for treating cancer and infectious diseases; however, the use of these cells as a means of suppressing immune responses is only recently being explored. Here, we describe the induction of RNA interference through administering short interfering RNA (siRNA) as a means of specifically generating tolerogenic DCs. Knockdown of CD40, CD80, and CD86, prior to loading DCs with the arthritogenic Ag collagen II, led to a population of cells that could effectively suppress onset of collagen-induced arthritis. Maximum benefits were observed when all three genes were concurrently silenced. Disease suppression was associated with inhibition of collagen II-specific Ab production and suppression of T cell recall responses. Downregulation of IL-2, IFN-gamma, TNF-alpha, and IL-17 and increased FoxP3(+) cells with regulatory activity were observed in collagen-induced arthritis mice treated with siRNA-transfected DCs. Collectively, these data support the use of ex vivo gene manipulation in DCs using siRNA to generate tailor-made tolerogenic vaccines for treating autoimmunity.
Collapse
Affiliation(s)
- Xiufen Zheng
- Department of Surgery, University of Western Ontario, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zheng X, Suzuki M, Zhang X, Ichim TE, Zhu F, Ling H, Shunnar A, Wang MH, Garcia B, Inman RD, Min WP. RNAi-mediated CD40-CD154 interruption promotes tolerance in autoimmune arthritis. Arthritis Res Ther 2010; 12:R13. [PMID: 20102615 PMCID: PMC2875641 DOI: 10.1186/ar2914] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/08/2009] [Accepted: 01/26/2010] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION We have previously demonstrated that ex vivo inhibition of costimulatory molecules on antigen-pulsed dendritic cells (DCs) can be useful for induction of antigen-specific immune deviation and suppression of autoimmune arthritis in the collagen induced arthritis (CIA) model. The current study evaluated a practical method of immune modulation through temporary systemic inhibition of the costimulatory molecule CD40. METHODS Mice with collagen II (CII)-induced arthritis (CIA) were administered siRNA targeting the CD40 molecule. Therapeutic effects were evaluated by clinical symptoms, histopathology, Ag-specific T cell and B cell immune responses. RESULTS Systemic administration of CD40-targeting siRNA can inhibit antigen-specific T cell response to collagen II, as well as prevent pathogenesis of disease in both a pre- and post-immunization manner in the CIA model. Disease amelioration was associated with suppression of Th1 cytokines, attenuation of antibody production, and upregulation of T regulatory cells. CONCLUSIONS These studies support the feasibility of transient gene silencing at a systemic level as a mechanism of resetting autoreactive immunity.
Collapse
Affiliation(s)
- Xiufen Zheng
- Departments of Surgery, Pathology, Microbiology and Immunology, University of Western Ontario, 1393 Western Road, London, Ontario, N6G 1G9, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
BACKGROUND Multiple sclerosis (MS) is a disease in which safety is of paramount importance when developing a potential therapeutic. Antigen-specific treatments provide a method for achieving efficacy while maintaining safety. DNA vaccines are one such form of treatment that have been tested in clinical trials OBJECTIVE To determine if a DNA vaccine is a viable method of antigen-specific treatment of MS. RESULTS/CONCLUSION Phase I and II trials of BHT-3009, a DNA vaccine encoding myelin basic protein, demonstrated that it was safe, well-tolerated, and caused antigen-specific immune tolerance. BHT-3009 showed efficacy in reducing brain lesion activity as well as clinical relapses in patients that were immunologically active at baseline. BHT-3009 is a promising therapy in development for MS, and may prove to be one of the first antigen-specific treatments for this disease.
Collapse
Affiliation(s)
- Hideki Garren
- Stanford University, Department of Neurology and Neurological Sciences, Stanford, CA, USA.
| |
Collapse
|