1
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Xie W, Ling M, Xiao T, Fan Z, Chen D, Tang M, Bian Q. Tanshinone IIA-regulation of IL-6 antagonizes PM 2 .5 -induced proliferation of human bronchial epithelial cells via a STAT3/miR-21 reciprocal loop. ENVIRONMENTAL TOXICOLOGY 2022; 37:1686-1696. [PMID: 35304817 DOI: 10.1002/tox.23517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter 2.5 (PM2.5 ), a component of atmospheric particulate matter, leads to changes in gene expression and cellular functions. Epidemiological evidence confirms that PM2.5 has a positive correlation with lung injury. However, the molecular mechanisms involved remain poorly understood, and preventive methods are needed. In the present study, with human bronchial epithelial (HBE) cells in culture, we showed that low concentrations of PM2.5 resulted in acceleration of the G1/S transition and cell proliferation. Consistent with these effects, expression of the pro-inflammatory factor interleukin-6 (IL-6) was elevated in HBE cells exposed to PM2.5 . Accordingly, signal transducer and activator of transcription 3 (STAT3) was activated, which down-regulated expression of cyclin D1. In addition, PM2.5 exposure led to higher levels of miR-21, and there was a reciprocal loop between miR-21 and STAT3. For HBE cells, tanshinone IIA (Tan IIA) reversed the PM2.5 -induced cell cycle alteration and cell proliferation, and reduced the expression of cytokines (IL-6, STAT3, and miR-21). These results show that, for HBE cells, Tan IIA attenuates the PM2.5 -induced G1/S alteration and cell proliferation, and indicate that it has potential clinical application for PM2.5 -induced respiratory injuries.
Collapse
Affiliation(s)
- Wenjing Xie
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Public Health Administration Center, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Min Ling
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Tian Xiao
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Zi Fan
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongya Chen
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Gupta S, Kumar A, Tejavath KK. A pharmacognostic approach for mitigating pancreatic cancer: emphasis on herbal extracts and phytoconstituents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00246-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is studied as one of the most lethal cancers with currently no control of its lethality, mainly due to its late diagnosis and lack of foolproof treatment processes. Despite continuous efforts being made in looking for therapies to deal with cancer, it keeps on being a labyrinth for the researchers. Efforts like discovering new treatment options, repurposing existing drugs, are continuously made to deal with this cancer.
Main body
With the urge to get answers and the fact that nature has all roots of therapeutics, efforts are made in the direction of finding those answers for providing ministrations for pancreatic cancer from plant products. Plant products are used as treatment options either directly in the form of extracts or an alternative to them is individual phytochemicals that are either isolated from the plants or are commercially synthesized for various purposes. In this review, we put forward such pharmacognostic initiatives made in combating pancreatic cancer, focusing mainly on plant extracts and various phytochemicals; along with the mechanisms which they triggered to fulfill the need for cytotoxicity to pancreatic cancer cells (in vitro and in vivo).
Conclusion
This study will thus provide insights into new combination therapy that can be used and also give a clue on which plant product and phytoconstituent can be used in dealing with pancreatic cancer.
Graphical abstract
Collapse
|
4
|
Xiao T, Ling M, Xu H, Luo F, Xue J, Chen C, Bai J, Zhang Q, Wang Y, Bian Q, Liu Q. NF-κB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM 2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol 2019; 377:114616. [PMID: 31185220 DOI: 10.1016/j.taap.2019.114616] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/02/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Air pollution, especially fine particulate matter (PM2.5, particles <2.5 μm in size), induces adverse health effects on the respiratory system. Uncontrolled proliferation of bronchial epithelial cells, resulting from deregulated cell cycle progression, contributes to pulmonary homeostatic imbalance. Although dysregulation of miRNAs is involved in a variety of pathophysiologic processes, the role of miRNAs in lung injury caused by PM2.5 is unclear. In the present study, we found that different concentrations of PM2.5 caused a biphasic effect on proliferation of human bronchial epithelial (HBE) cells. PM2.5 induced an aberrant cell cycle and proliferation of HBE cells, and up-regulated miR-155 levels with a concentration-dependent manner. High miR-155 expression, mediated by NF-κB activation, produced an accelerated G1/S phase and cell proliferation though the STAT3 pathway, which targeted SOCS1. These findings indicate that NF-κB-mediated miR-155 induces an altered cell cycle through epigenetic modulation of the SOCS1/STAT3 signaling pathway and provide a mechanism for the biphasic effect of different concentrations of PM2.5 in inducing respiratory injury.
Collapse
Affiliation(s)
- Tian Xiao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Min Ling
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Hui Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Fei Luo
- Faculty of Public Health, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Junchao Xue
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Chao Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yan Wang
- Faculty of Public Health, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China.
| | - Qizhan Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
5
|
Liu Y, Wang B, Liu X, Lu L, Luo F, Lu X, Shi L, Xu W, Liu Q. Epigenetic silencing of p21 by long non-coding RNA HOTAIR is involved in the cell cycle disorder induced by cigarette smoke extract. Toxicol Lett 2015; 240:60-7. [PMID: 26506537 DOI: 10.1016/j.toxlet.2015.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 01/17/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are epigenetic regulators, are involved in human malignancies. Little is known, however, about the molecular mechanisms for lncRNA regulation of genes induced by cigarette smoke. We recently found that, in human bronchial epithelial (HBE) cells, the lncRNA, Hox transcript antisense intergenic RNA (HOTAIR), is associated with changes in the cell cycle caused by cigarette smoke extract (CSE). In the present study, we report that increased expression of HOTAIR and enhancer of zeste homolog 2 (EZH2), and tri-methylation of Lys 27 of histone H3 (H3K27me3), affect cell cycle progression during CSE-induced transformation of HBE cells. Inhibition of HOTAIR and EZH2 by siRNAs attenuated CSE-induced decreases of p21 levels. Further, ChIP assays verified that HOTAIR and EZH2 were needed to maintain the interaction of H3K27me3 with the promoter regions of p21; combined use of a HOTAIR plasmid and EZH2 siRNA supported this observation. Thus, HOTAIR epigenetic silencing of p21 via EZH2-mediated H3K27 trimethylation contributes to changes in the cell cycle induced by CSE. These observations provide further understanding of the regulation of CSE-induced lung carcinogenesis and identify new therapeutic targets.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Bairu Wang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Wenchao Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
6
|
Wang F, Wang Q, Zhou ZW, Yu SN, Pan ST, He ZX, Zhang X, Wang D, Yang YX, Yang T, Sun T, Li M, Qiu JX, Zhou SF. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:537-60. [PMID: 25632222 PMCID: PMC4304578 DOI: 10.2147/dddt.s73689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/mammalian target of rapamycin and p38 MAPK mediated pathways.
Collapse
Affiliation(s)
- Feng Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Qi Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| | - Song-Ning Yu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Tianxing Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Tao Sun
- Key Lab of Craniocerebral Diseases of Ningxia, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Min Li
- Department of Medicine and Department of Surgery, The University of Oklahoma Health Sciences Center, Stanton L Young Biomedical Research Center, Oklahoma City, OK, USA
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Molecular Diagnostics in the Neoplasms of the Pancreas, Liver, Gall Bladder, and Extrahepatic Biliary Tract. Clin Lab Med 2013; 33:875-80. [DOI: 10.1016/j.cll.2013.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Young G, Wang K, He J, Otto G, Hawryluk M, Zwirco Z, Brennan T, Nahas M, Donahue A, Yelensky R, Lipson D, Sheehan CE, Boguniewicz AB, Stephens PJ, Miller VA, Ross JS. Clinical next-generation sequencing successfully applied to fine-needle aspirations of pulmonary and pancreatic neoplasms. Cancer Cytopathol 2013; 121:688-94. [PMID: 23893923 DOI: 10.1002/cncy.21338] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Next-generation sequencing was performed on pulmonary and pancreatic fine-needle aspirations (FNAs) and on paired FNAs and resected primary tumors from the same patient. METHODS DNA was isolated in formalin-fixed, paraffin-embedded cell blocks from 16 pulmonary FNAs, 23 pancreatic FNAs, and 5 resected pancreatic primary tumors. Next-generation sequencing was performed for 4561 exons of 287 cancer-related genes and for 47 introns of 19 genes on indexed, adaptor-ligated, hybridization-captured libraries using a proprietary sequencing system (the Illumina HiSeq 2000). RESULTS Genomic profiles were generated successfully from 16 of 16 (100%) pulmonary FNAs, which included 14 nonsmall cell lung cancers (NSCLCs) and 2 small cell lung cancers (SCLCs). The NSCLC group included 6 adenocarcinomas, 5 squamous cell carcinomas, and 3 NSCLCs not otherwise specified. Genomic profiles were successfully obtained from 23 of 23 (100%) pancreatic FNAs and from 5 of 5 (100%) matched pancreatic primary tumors, which included 17 ductal adenocarcinomas, 3 mucinous adenocarcinomas, 2 adenocarcinomas NOS, and 1 neuroendocrine tumor. Eighty-one genomic alterations were identified in the 16 pulmonary FNAs (average, 5.1 genomic alterations per patient); and the most common genomic alterations were TP53, RB1, SOX2, PIK3CA, and KRAS. Eighty-seven genomic alterations were identified in the 23 pancreatic tumor FNAs (average, 3.8 genomic alterations per patient); and the most common genomic alterations were KRAS, TP53, CDKN2A/B, SMAD4, and PTEN. Among the pancreatic tumors, there was 100% concordance of 20 genomic alterations that were identified in 5 patient-matched FNA and surgical primary tumor pairs. CONCLUSIONS The authors were able to perform next-generation sequencing reliably on FNAs of pulmonary and pancreatic tumors, and the genomic alterations discovered correlated well with those identified in matched resected pancreatic tumors.
Collapse
Affiliation(s)
- Geneva Young
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|