1
|
Afsar S, Syed RU, Khojali WMA, Masood N, Osman ME, Jyothi JS, Hadi MA, Khalifa AAS, Aboshouk NAM, Alsaikhan HA, Alafnan AS, Alrashidi BA. Non-coding RNAs in BRAF-mutant melanoma: targets, indicators, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:297-317. [PMID: 39167168 DOI: 10.1007/s00210-024-03366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Melanoma, a highly aggressive skin cancer, is often driven by BRAF mutations, such as the V600E mutation, which promotes cancer growth through the MAPK pathway and contributes to treatment resistance. Understanding the role of non-coding RNAs (ncRNAs) in these processes is crucial for developing new therapeutic strategies. This review aims to elucidate the relationship between ncRNAs and BRAF mutations in melanoma, focusing on their regulatory roles and impact on treatment resistance. We comprehensively reviewed current literature to synthesize evidence on ncRNA-mediated regulation of BRAF-mutant melanoma and their influence on therapeutic responses. Key ncRNAs, including microRNAs and long ncRNAs, were identified as significant regulators of melanoma development and therapy resistance. MicroRNAs such as miR-15/16 and miR-200 families modulate critical pathways like Wnt signaling and melanogenesis. Long ncRNAs like ANRIL and SAMMSON play roles in cell growth, invasion, and drug susceptibility. Specific ncRNAs, such as BANCR and RMEL3, intersect with the MAPK pathway, highlighting their potential as therapeutic targets or biomarkers in BRAF-mutant melanoma. Additionally, ncRNAs involved in drug resistance, such as miR-579-3p and miR-1246, target processes like autophagy and immune checkpoint regulation. This review highlights the pivotal roles of ncRNAs in regulating BRAF-mutant melanoma and their contribution to drug resistance. These findings underscore the potential of ncRNAs as biomarkers and therapeutic targets, paving the way for innovative treatments to improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, 517502, India.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, 81451, Ha'il,, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - J Siva Jyothi
- Department of Pharmaceutics, Hindu College of Pharmacy, Andhra Pradesh, India
| | - Mohd Abdul Hadi
- Department of Pharmaceutics, Bhaskar Pharmacy College, Moinabad, R.R.District, Hyderabad, 500075, Telangana, India
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | | | | | | |
Collapse
|
2
|
Levati L, Bassi C, Mastroeni S, Lupini L, Antonini Cappellini GC, Bonmassar L, Alvino E, Caporali S, Lacal PM, Narducci MG, Molineris I, De Galitiis F, Negrini M, Russo G, D’Atri S. Circulating miR-1246 and miR-485-3p as Promising Biomarkers of Clinical Response and Outcome in Melanoma Patients Treated with Targeted Therapy. Cancers (Basel) 2022; 14:cancers14153706. [PMID: 35954369 PMCID: PMC9367338 DOI: 10.3390/cancers14153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the significant improvements in advanced melanoma therapy, there is still a pressing need for biomarkers that can predict patient response and prognosis, and therefore support rational treatment decisions. Here, we investigated whether circulating miRNAs could be biomarkers of clinical outcomes in patients treated with targeted therapy. Using next-generation sequencing, we profiled plasma miRNAs at baseline and at progression in patients treated with BRAF inhibitors (BRAFi) or BRAFi + MEKi. Selected miRNAs associated with response to therapy were subjected to validation by real-time quantitative RT-PCR . Receiver Operating Characteristics (ROC), Kaplan–Meier and univariate and multivariate Cox regression analyses were performed on the validated miR-1246 and miR-485-3p baseline levels. The median baseline levels of miR-1246 and miR-485-3p were significantly higher and lower, respectively, in the group of patients not responding to therapy (NRs) as compared with the group of responding patients (Rs). In Rs, a trend toward an increase in miR-1246 and a decrease in miR-485-3p was observed at progression. Baseline miR-1246 level and the miR-1246/miR-485-3p ratio showed a good ability to discriminate between Rs and NRs. Poorer PFS and OS were observed in patients with unfavorable levels of at least one miRNA. In multivariate analysis, a low level of miR-485-3p and a high miR-1246/miR-485-3p ratio remained independent negative prognostic factors for PFS, while a high miR-1246/miR-485-3p ratio was associated with an increased risk of mortality, although statistical significance was not reached. Evaluation of miR-1246 and miR-485-3p baseline plasma levels might help clinicians to identify melanoma patients most likely to be unresponsive to targeted therapy or at higher risk for short-term PFS and mortality, thus improving their management.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Cristian Bassi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Simona Mastroeni
- Clinical Epidemiology Unit, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Laura Lupini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Simona Caporali
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Maria Grazia Narducci
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Stefania D’Atri
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
- Correspondence:
| |
Collapse
|
3
|
Sánchez-Sendra B, González-Muñoz JF, Pérez-Debén S, Monteagudo C. The Prognostic Value of miR-125b, miR-200c and miR-205 in Primary Cutaneous Malignant Melanoma Is Independent of BRAF Mutational Status. Cancers (Basel) 2022; 14:cancers14061532. [PMID: 35326682 PMCID: PMC8946551 DOI: 10.3390/cancers14061532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Melanoma accounts for the majority of skin cancer-related deaths. On the one hand, most melanomas contain mutations in the BRAF gene (predominantly V600E), and on the other hand, miRNAs modulate different steps in melanoma development and progression, but there are no reports that study the relation between BRAF mutational status and the expression of miRNAs, which is important for an accurate patient prognosis. The aim of our retrospective study was to know whether BRAF mutations influence the prognostic value of miR-125b, miR-200c and miR-205 intratumoral expression in primary cutaneous melanomas. Globally, our results showed that miR-125b, miR-200c and miR-205 expression predicted the clinical outcome of primary melanomas independently of BRAF status. Thus, our findings support that BRAF mutations alone do not predict the risk of metastasis development or melanoma survival and that miR-125b, miR-200c and miR-205 may be considered as accurate prognostic biomarkers in melanoma regardless of BRAF mutational status. Abstract BRAF mutations are present in around 50% of cutaneous malignant melanomas and are related to a poor outcome in advanced-stage melanoma patients. miRNAs are epigenetic regulators that modulate different cellular processes in cancer, including melanoma development and progression. However, there are no studies on the potential associations of the genetic alterations of the BRAF gene with miRNA expression in primary cutaneous melanomas. Here, in order to analyze the influence of BRAF mutations in the ability of selected miRNAs to predict clinical outcome and patient survival at the time of diagnosis, we studied the prognostic value of miR-125b, miR-200c and miR-205 expression depending on the BRAF mutational status in fresh, frozen primary tumor specimens. For this purpose, RNA was extracted for studying both BRAF mutations by Sanger sequencing and miRNA expression. Our results indicate that, although there seems to be a slight preference for their predictive ability in the BRAF mutated group, the expression of these three miRNAs serves effectively to predict the clinical outcome of melanoma patients independently of BRAF mutational status at the time of primary tumor diagnosis.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sendra
- Department of Pathology, University of Valencia, 46010 Valencia, Spain;
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
| | | | - Silvia Pérez-Debén
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
| | - Carlos Monteagudo
- Department of Pathology, University of Valencia, 46010 Valencia, Spain;
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
- Department of Pathology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-398-3953
| |
Collapse
|
4
|
Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, Jafarzadeh S, Hamblin MR, Jafari Najaf Abadi MH, Mirzaei H. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol 2022; 10:955486. [PMID: 36313570 PMCID: PMC9608775 DOI: 10.3389/fcell.2022.955486] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Majid Noori
- Golestan Hospital Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| |
Collapse
|
5
|
Wang Z, Li H, Li F, Su X, Zhang J. Bioinformatics-Based Identification of a circRNA-miRNA-mRNA Axis in Esophageal Squamous Cell Carcinomas. JOURNAL OF ONCOLOGY 2020; 2020:8813800. [PMID: 33061972 PMCID: PMC7542503 DOI: 10.1155/2020/8813800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) has a poor prognosis due to the lack of early disease symptoms. Using bioinformatics tools, this study aimed to discover differentially expressed nonprotein-coding RNAs and genes with potential prognostic relevance in ESCC. METHODS Two microRNAs (miRNAs) and one circular RNA (circRNA) microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression of miRNAs (DEMs) and circRNAs (DECs) was, respectively, identified in ESCC tissue and compared to adjacent healthy tissue. Further analysis was performed using the miRNA microarray datasets, where miRTarBase was used to predict which messenger RNAs (mRNAs) was present. This was followed by protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses. Moreover, cytoHubba and UALCAN were used to predict the important nodes and perform patient survival analysis, respectively. The miRNA-associated circRNAs were predicted using the ENCORI website. The interaction between DECs and the predicted circRNAs was also determined. A circRNA-miRNA-mRNA axis was constructed. RESULTS Associated with RAP1B and circ_0052867, two miRNAs (miR-133b and miR-139-5p) were identified as being differentially expressed and downregulated across the two datasets. Finally, the circ_0052867/miR-139-5p/RAP1B regulatory axis was established. CONCLUSION This study provides support for the possible mechanisms of disease progression in ESCC.
Collapse
Affiliation(s)
- Zhaojun Wang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Haifeng Li
- Department of Anesthesiology, Guangdong General Hospital, Guangzhou, China
| | - Fajun Li
- Department of Critical Care Medicine, The First People's Hospital of Kunshan, Kunshan, China
| | - Xin Su
- Department of Respiratory, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Junhang Zhang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
7
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
8
|
Lorusso C, De Summa S, Pinto R, Danza K, Tommasi S. miRNAs as Key Players in the Management of Cutaneous Melanoma. Cells 2020; 9:E415. [PMID: 32054078 PMCID: PMC7072468 DOI: 10.3390/cells9020415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
The number of treatment options for melanoma patients has grown in the past few years, leading to considerable improvements in both overall and progression-free survival. Targeted therapies and immune checkpoint inhibitors have opened a new era in the management of melanoma patients. Despite the clinical advances, further research efforts are needed to identify other "druggable" targets and new biomarkers to improve the stratification of melanoma patients who could really benefit from targeted and immunotherapies. To this end, many studies have focused on the role of microRNAs (miRNAs) that are small non-coding RNAs (18-25 nucleotides in length), which post-transcriptionally regulate the expression of their targets. In cancer, they can behave either as oncogenes or oncosuppressive genes and play a central role in many intracellular pathways involved in proliferation and invasion. Given their modulating activity on the transcriptional landscape, their biological role is under investigation to study resistance mechanisms. They are able to mediate the communication between tumor cells and their microenvironment and regulate tumor immunity through direct regulation of the genes involved in immune activation or suppression. To date, a very promising miRNA-based strategy is to use them as prognosis and diagnosis biomarkers both as cell-free miRNAs and extracellular-vesicle miRNAs. However, miRNAs have a complex role since they target different genes in different cellular conditions. Thus, the ultimate aim of studies has been to recapitulate their role in melanoma in biological networks that account for miRNA/gene expression and mutational state. In this review, we will provide an overview of current scientific knowledge regarding the oncogenic or oncosuppressive role of miRNAs in melanoma and their use as biomarkers, with respect to approved therapies for melanoma treatment.
Collapse
|
9
|
Thyagarajan A, Tsai KY, Sahu RP. MicroRNA heterogeneity in melanoma progression. Semin Cancer Biol 2019; 59:208-220. [PMID: 31163254 PMCID: PMC6885122 DOI: 10.1016/j.semcancer.2019.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023]
Abstract
The altered expression of miRNAs has been linked with neocarcinogenesis or the development of human malignancies including melanoma. Of significance, multiple clinical studies have documented that distinct sets of microRNAs (miRNAs) could be utilized as prognostic biomarkers for cancer development or predict the outcomes of treatment responses. To that end, an in-depth validation of such differentially expressed miRNAs is necessary in diverse settings of cancer patients in order to devise novel approaches to control tumor growth and/or enhance the efficacy of clinically-relevant therapeutic options. Moreover, considering the heterogeneity and sophisticated regulation of miRNAs, the precise delineation of their cellular targets could also be explored to design personalized medicine. Given the significance of miRNAs in regulating several key cellular processes of tumor cells including cell cycle progression and apoptosis, we review the findings of such miRNAs implicated in melanoma tumorigenesis. Understanding the novel mechanistic insights of such miRNAs will be useful for developing diagnostic or prognostic biomarkers or devising future therapeutic intervention for malignant melanoma.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Kenneth Y Tsai
- Departments of Anatomic Pathology & Tumor Biology at H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA.
| |
Collapse
|
10
|
Afrang N, Honardoost M. Cell cycle regulatory markers in melanoma: New strategies in diagnosis and treatment. Med J Islam Repub Iran 2019; 33:96. [PMID: 31696090 PMCID: PMC6825388 DOI: 10.34171/mjiri.33.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Melanoma has been known as an aggressive type of skin cancer in recent years. Reports have distributed the spread rate of melanoma among white skin populations. Also, many studies have mentioned several causes of melanoma. Ultraviolet radiation was represented to be the most important reason for occurrence of melanoma. However, recent studies have found that a combination of factors, such as environmental and genetic factors, can contribute to occurrence of various cancers, specifically melanoma. Methods: Different studies have been conducted on the efficacy of genetic disorders in melanoma. These surveys marked the key role of specific biomarkers in molecular and cellular processes, and investigations have found the expression of several genes in these processes. In addition, aberrant expression of these genes due to mutation and methylation can affect the whole process. Results: The expression process of these genes is regulated by microRNAs. These new biomolecules have been considered as negative regulators because of managing molecular and cellular processes. MicroRNAs are small conserved regulators attached to their targets leading to rearrangement of gene expression. Adherence of these noncoding RNAs can cause mRNA degradation or inhibit its translation. Conclusion: Recently, the application of specific genes in melanoma has been studied. In this review, the way melanoma is regulated because of these biomarkers and their demand through cell cycle in diagnosis, prognosis, and therapeutic periods was considered. Keywords: Melanoma, Biomarkers, Cell cycle, Biomolecules
Collapse
Affiliation(s)
- Negin Afrang
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhang C, Li H, Wang J, Zhang J, Hou X. MicroRNA-338-3p suppresses cell proliferation, migration and invasion in human malignant melanoma by targeting MACC1. Exp Ther Med 2019; 18:997-1004. [PMID: 31316597 PMCID: PMC6601406 DOI: 10.3892/etm.2019.7644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma (MM) is the most aggressive form of skin cancer originating from melanocytes with increased proliferative and metastatic ability. Previous studies have revealed that microRNA-338-3p (miR-338-3p) functions as a tumor suppressor in several types of cancer, including cervical cancer, renal cell carcinoma and thyroid cancer. However, the function and mechanism underlying the action of miR-383-3p in MM remain unclear. In the study, aberrant downregulation of miR-338-3p was observed in 60 pairs of MM and adjacent non-tumor tissue using quantitative polymerase chain reaction assay. Decreased miR-383-3p expression was associated with advanced clinical stage (P<0.05) and lymph node metastasis (P<0.001). The overexpression of miR-338-3p in A375 and G361 cells suppressed cell proliferation and migration using MTT, colony formation, wound healing and transwell assays. Mechanistically, MACC1 was identified as a direct target for miR-338-3p using bioinformatics prediction and dual-luciferase assays. Furthermore, MACC1 expression was significantly increased and inversely correlated with the levels of miR-338-3p in MM tissues. More importantly, restoration of MACC1 resulted in reversed the inhibitory effects of miR-338-3p overexpression on MM cells by altering the expression levels of PCNA and epithelial-mesenchymal transition (EMT)-associated proteins. These results suggest that miR-338-3p functions as a novel tumor suppressor, at least in part, via targeting MACC1 and suggest that miR-338-3p may serve as a potential target for treatment of MM patients.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hui Li
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Junling Wang
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Jibei Zhang
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xiaoqian Hou
- Department of Burn and Plastic Surgery, Cangzhou Center Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
12
|
Fattore L, Mancini R, Ascierto PA, Ciliberto G. The potential of BRAF-associated non-coding RNA as a therapeutic target in melanoma. Expert Opin Ther Targets 2018; 23:53-68. [PMID: 30507327 DOI: 10.1080/14728222.2019.1554057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The advent of targeted therapies and immune checkpoints inhibitors has enhanced the treatment of metastatic melanomas. Despite striking improvements of patients' survival, drug resistance continues to limit the efficacy of such treatments. Genetic and nongenetic/adaptive mechanisms of resistance could be involved; in the latter mechanism, noncoding RNAs (ncRNAs) are emerging as key players. Areas covered: This article outlines the current knowledge of ncRNA involvement in BRAF-mutant melanomas and the development of resistance to targeted/immunotherapies. We also discuss how ncRNAs can be exploited for the development of therapeutic and diagnostic approaches. Expert opinion: ncRNAs can be envisaged as powerful diagnostics and therapeutics. Despite progress in our knowledge about their deregulation in cancer, it is still difficult to derive universal and robust ncRNAs unique signatures of malignancy for diagnostic purposes, which need validation in large cohort of patients. Also, ncRNA specific targeting to melanoma cells in vivo requires the development of improved systemic delivery tools. In this regard, the development of stable nanodelivery particles seems to offer renewed hope for success in the clinic.
Collapse
Affiliation(s)
- Luigi Fattore
- a IRCCS , Regina Elena National Cancer Institute , Rome , Italy
| | - Rita Mancini
- b Department of Molecular and Clinical Medicine , University of Roma "Sapienza" , Rome , Italy
| | | | | |
Collapse
|
13
|
Linck L, Liebig J, Völler D, Eichner N, Lehmann G, Meister G, Bosserhoff A. MicroRNA-sequencing data analyzing melanoma development and progression. Exp Mol Pathol 2018; 105:371-379. [PMID: 30414979 DOI: 10.1016/j.yexmp.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/07/2018] [Accepted: 11/06/2018] [Indexed: 01/29/2023]
Abstract
MicroRNAs (miRNAs) deregulated in melanoma are of growing importance in cancer research. We aimed to define the miRNAome of melanoma cell lines and primary melanocytes by RNA-Seq using identical cell lines as in a published miRNA expression study based on cDNA arrays. We identified 79 miRNAs, which are significantly deregulated during melanoma development. In addition, we could also determine 29 miRNAs being involved in melanoma progression. Interestingly, not all characterized miRNAs derived from cDNA array analyses of our and other groups could be found to be differentially expressed using RNA-Seq analyses, however, new miRNAs, formerly not associated with melanoma, were found to be strongly regulated.
Collapse
Affiliation(s)
- Lisa Linck
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Janika Liebig
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Daniel Völler
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Norbert Eichner
- Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Gerhard Lehmann
- Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Anja Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
14
|
Wang X, Qu H, Dong Y, Wang G, Zhen Y, Zhang L. Targeting signal-transducer-and-activator-of-transcription 3 sensitizes human cutaneous melanoma cells to BRAF inhibitor. Cancer Biomark 2018; 23:67-77. [PMID: 30010109 DOI: 10.3233/cbm-181365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanoma treatment with the BRAF V600E inhibitor vemurafenib provides therapeutic benefits but the common emergence of drug resistance remains a challenge. To define molecular mechanisms of vemurafenib resistance, we generated A375-R, WM35-R cell lines resistant to vemurafenib and show that the phosphorylated (p)-STAT3 was upregulated in these cells in vitro and in vivo. In particular, activation of the Signal-transducer-and-activator-of-transcription 3 (STAT3) pathway was associated with vemurafenib resistance. Inhibition of this pathway with STAT3-specific siRNA (shRNA) sensitized A375-R, WM35-R cells to vemurafenib and induced apoptosis in vitro and in vivo. Moreover, targeting STAT3 induced expression of miR-579-3p and elicited resistance to vemurafenib. However, targeting microRNA (miR)-579-3p with anti-miR-579-3p reversed the resistance to vemurafenib. Together, these results indicated that STAT3-mediated downexpression of miR-579-3p caused resistance to vemurafenib. Our findings suggest novel approaches to overcome resistance to vemurafenib by combining vemurafenib with STAT3 sliencing or miR-579-3p overexpression.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Orthopedics, The Central Hospital of Linyi, Linyi, Shandong, China.,Department of Orthopedics, The Central Hospital of Linyi, Linyi, Shandong, China
| | - Huajun Qu
- Department of Cosmetic Plastic Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China.,Department of Orthopedics, The Central Hospital of Linyi, Linyi, Shandong, China
| | - Yinghe Dong
- Department of Cosmetic Plastic Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Guozhi Wang
- Department of Cosmetic Plastic Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Yuchen Zhen
- Department of Cosmetic Plastic Surgery, The Second Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Linxia Zhang
- Department of Medcine, The People's Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|
15
|
Abstract
Although microRNAs (miRNAs) have emerged as potent mediators of melanoma development and progression, a precise understanding of their oncogenic role remains unclear. In this study, we analysed formalin-fixed and paraffin-embedded tissues from two separate melanoma cohorts and from a series of benign melanocytic nevi. Using three different quantification methods [array analysis, quantitative PCR (qPCR) and in-situ hybridization (ISH) quantified by digital image analysis], we found considerable miRNA dysregulation in tumours. Using array analysis, samples mainly clustered according to their biological group (benign vs. malignant) and 77 miRNAs differed significantly between nevi and melanoma samples. Increase of miR-21 and miR-142, and decrease of miR-125b, miR-211, miR-101 and miR-513c in the melanomas were verified in both cohorts using qPCR, whereas the decrease of miR-205 observed with array analysis could not be confirmed using qPCR. ISH with digital quantification showed expression of miR-21 and miR-125b in the melanocytic lesions. miR-21 ISH was increased in melanomas, whereas quantification of miR-125b showed uniform ISH expression across nevi and melanomas. Our results support the important involvement of different miRNAs in melanoma biology and may serve as solid basics for further miRNA investigations in melanoma formalin-fixed and paraffin-embedded tissue. In particular, there is increased expression of miR-21 in melanomas compared with benign nevi.
Collapse
|
16
|
Thyagarajan A, Shaban A, Sahu RP. MicroRNA-Directed Cancer Therapies: Implications in Melanoma Intervention. J Pharmacol Exp Ther 2018; 364:1-12. [PMID: 29054858 PMCID: PMC5733457 DOI: 10.1124/jpet.117.242636] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Acquired tumor resistance to cancer therapies poses major challenges in the treatment of cancers including melanoma. Among several signaling pathways or factors that affect neocarcinogenesis, cancer progression, and therapies, altered microRNAs (miRNAs) expression has been identified as a crucial player in modulating the key pathways governing these events. While studies in the miRNA field have grown exponentially in the last decade, much remains to be discovered, particularly with respect to their roles in cancer therapies. Since immune and nonimmune signaling cascades prevail in cancers, identification and evaluation of miRNAs, their molecular mechanisms and cellular targets involved in the underlying development of cancers, and acquired therapeutic resistance would help in devising new strategies for the prognosis, treatment, and an early detection of recurrence. Importantly, in-depth validation of miRNA-targeted molecular events could lead to the development of accurate progression-risk biomarkers, improved effectiveness, and improved patient responses to standard therapies. The current review focuses on the roles of miRNAs with recent updates on regulated cell cycle and proliferation, immune responses, oncogenic/epigenetic signaling pathways, invasion, metastasis, and apoptosis, with broader attention paid to melanomagenesis and melanoma therapies.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio (A.T., R.P.S.); and Department of Pharmacology, Faculty of veterinary medicine, Zagazig University, Zagazig, Egypt (A.S.)
| | - Ahmed Shaban
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio (A.T., R.P.S.); and Department of Pharmacology, Faculty of veterinary medicine, Zagazig University, Zagazig, Egypt (A.S.)
| | - Ravi Prakash Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio (A.T., R.P.S.); and Department of Pharmacology, Faculty of veterinary medicine, Zagazig University, Zagazig, Egypt (A.S.)
| |
Collapse
|
17
|
Chen P, Chen F, Zhou B. Therapeutic efficacy and safety of combined BRAF and MEK inhibition in patients with malignant melanoma: a meta-analysis. Onco Targets Ther 2017; 10:5391-5403. [PMID: 29180872 PMCID: PMC5692200 DOI: 10.2147/ott.s147438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Recent clinical studies have shown that initial therapy with combined BRAF and mitogen-activated extracellular signal-regulated kinase (MEK) inhibition is more effective in metastatic melanoma than single-agent BRAF inhibitors. However, the response rates with single-agent BRAF are low. Thus, the objective of this study was to conduct a meta-analysis of randomized controlled trials to compare the efficacy and adverse events risk between mono-therapy and combination therapy. Materials and methods Searches were made in PubMed and EMBASE electronic databases and conference abstracts published by the American Society of Clinical Oncology from 2000 to 2017. Outcomes included overall response, progression-free survival, and overall survival, as well as the incidence rate of adverse events. Results Eight trials comprising 2,664 patients were included in the meta-analysis. Patients with combined therapies showed superior results compared to those with BRAF inhibitors alone for the following: overall response rate (combined relative risk [RR] =1.34, 95% confidence interval [95% CI]: 1.24–1.45, P<0.00001), progression-free survival (combined hazards ratio [HR] =0.58, 95% CI: 0.52–0.64, P<0.00001), and overall survival rate (combined HR =0.70, 95% CI: 0.62–0.80, P<0.00001). Patients with combination therapies had higher incidence of adverse events including pyrexia (combined RR =2.00, 95% CI: 1.40–2.84), nausea (combined RR =1.41, 95% CI: 1.03–1.94), diarrhea (combined RR =1.50, 95% CI: 1.08–2.06), and vomiting (combined RR =1.87, 95% CI: 01.52–2.31) compared to those with BRAF inhibitors alone. Conclusion These data suggested that the combined BRAF and MEK inhibition was associated with a significant improvement in overall response, progression-free survival, and overall survival, but increased the incidence of adverse events among the patients with BRAF V600-mutated metastatic melanoma. Further large-scale, high-quality, placebo-controlled, double-blind trials are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Fuchao Chen
- Department of Pharmacy, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
18
|
Danza K, Silvestris N, Simone G, Signorile M, Saragoni L, Brunetti O, Monti M, Mazzotta A, De Summa S, Mangia A, Tommasi S. Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance. Cancer Biol Ther 2017; 17:400-6. [PMID: 26793992 DOI: 10.1080/15384047.2016.1139244] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the search for new therapeutic strategies for gastric cancer (GC), there is much evidence of progression due to resistance to chemotherapy. Multidrug resistance (MDR) is the ability of cancer cells to survive after exposure to chemotherapeutic agents. The involvement of miRNAs in the development of MDR has been well described but miRNAs able to modulate the sensitivity to chemotherapy by regulating hypoxia signaling pathways have not yet been fully addressed in GC. Our aim was to analyze miR-20b, miR-27a and miR-181a expression with respect to (epirubicin/oxaliplatin/capecitabine (EOX)) chemotherapy regimen in a set of GC patients, in order to investigate whether miRNAs deregulation may influence GC MDR also via hypoxia signaling modulation. Cancer biopsy were obtained from 21 untreated HER2 negative advanced GC patients, retrospectively analyzed. All patients received a first-line chemotherapy (EOX) regimen. MirWalk database was used to identify miR-27a, miR-181a and miR-20b target genes. The expression of miRNAs and of HIPK2, HIF1A and MDR1 genes were detected by real-time PCR. HIPK2 localization was assessed by immunohistochemistry. Our data showed the down-regulation of miR-20b, miR-27a, miR-181a concomitantly to higher levels of MDR1, HIF1A and HIPK2 genes in GC patients with a progressive disease respect to those with a disease control rate. Moreover, immunohistochemistry assay highlighted a higher cytoplasmic HIPK2 staining, suggesting a different role for it. We showed that aberrant expression of miR-20b, miR27a and miR-181a was associated with chemotherapeutic response in GC through HIF1A, MDR1 and HIPK2 genes modulation, suggesting a possible novel therapeutic strategy.
Collapse
Affiliation(s)
- Katia Danza
- a Molecular Genetics Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| | - Nicola Silvestris
- b Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| | - Giovanni Simone
- c Pathology Department , IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| | - Michele Signorile
- b Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| | - Luca Saragoni
- d Pathology Unit, Morgagni Pierantoni Hospital , Forlì , Italy
| | - Oronzo Brunetti
- b Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| | - Manlio Monti
- e Department of Medical Oncology , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS Meldola , Italy
| | - Annalisa Mazzotta
- f Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| | - Simona De Summa
- a Molecular Genetics Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| | - Anita Mangia
- f Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| | - Stefania Tommasi
- a Molecular Genetics Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II - Bari , Italy
| |
Collapse
|
19
|
Kozar I, Cesi G, Margue C, Philippidou D, Kreis S. Impact of BRAF kinase inhibitors on the miRNomes and transcriptomes of melanoma cells. Biochim Biophys Acta Gen Subj 2017; 1861:2980-2992. [PMID: 28408301 DOI: 10.1016/j.bbagen.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. METHODS To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. Subsequently, microarray analyses were performed followed by RT-qPCR validations. RESULTS Regarding miRNome and transcriptome changes, the long-term effects of BRAF inhibition differed in a cell line-specific manner with the two different BRAF inhibitors inducing comparable responses in three melanoma cell lines. Despite this heterogeneity, several miRNAs (e.g. miR-92a-1-5p, miR-708-5p) and genes (e.g. DOK5, PCSK2) were distinctly differentially expressed in drug-resistant versus -sensitive cell lines. Analyses of coexpressed miRNAs, as well as inversely correlated miRNA-mRNA pairs, revealed a low MITF/AXL ratio in two drug-resistant cell lines that might be regulated by miRNAs. CONCLUSION Several genes and miRNAs were differentially regulated in the drug-resistant and -sensitive cell lines and might be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug resistance. GENERAL SIGNIFICANCE Thus far, only little information is available on the significance and role of miRNAs with respect to kinase inhibitor treatments and emergence of drug resistance. In this study, promising miRNAs and genes were identified and associated to BRAF inhibitor-mediated resistance in melanoma. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ines Kozar
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Giulia Cesi
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Christiane Margue
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Demetra Philippidou
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Stephanie Kreis
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
20
|
Latchana N, Abrams ZB, Howard JH, Regan K, Jacob N, Fadda P, Terando A, Markowitz J, Agnese D, Payne P, Carson WE. Plasma MicroRNA Levels Following Resection of Metastatic Melanoma. Bioinform Biol Insights 2017; 11:1177932217694837. [PMID: 28469417 PMCID: PMC5345922 DOI: 10.1177/1177932217694837] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/26/2017] [Indexed: 11/17/2022] Open
Abstract
Melanoma remains the leading cause of skin cancer–related deaths. Surgical resection and adjuvant therapies can result in disease-free intervals for stage III and stage IV disease; however, recurrence is common. Understanding microRNA (miR) dynamics following surgical resection of melanomas is critical to accurately interpret miR changes suggestive of melanoma recurrence. Plasma of 6 patients with stage III (n = 2) and stage IV (n = 4) melanoma was evaluated using the NanoString platform to determine pre- and postsurgical miR expression profiles, enabling analysis of more than 800 miRs simultaneously in 12 samples. Principal component analysis detected underlying patterns of miR expression between pre- vs postsurgical patients. Group A contained 3 of 4 patients with stage IV disease (pre- and postsurgical samples) and 2 patients with stage III disease (postsurgical samples only). The corresponding preoperative samples to both individuals with stage III disease were contained in group B along with 1 individual with stage IV disease (pre- and postsurgical samples). Group A was distinguished from group B by statistically significant analysis of variance changes in miR expression (P < .0001). This analysis revealed that group A vs group B had downregulation of let-7b-5p, miR-520f, miR-720, miR-4454, miR-21-5p, miR-22-3p, miR-151a-3p, miR-378e, and miR-1283 and upregulation of miR-126-3p, miR-223-3p, miR-451a, let-7a-5p, let-7g-5p, miR-15b-5p, miR-16-5p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-26a-5p, miR-106a-5p, miR-17-5p, miR-130a-3p, miR-142-3p, miR-150-5p, miR-191-5p, miR-199a-3p, miR-199b-3p, and miR-1976. Changes in miR expression were not readily evident in individuals with distant metastatic disease (stage IV) as these individuals may have prolonged inflammatory responses. Thus, inflammatory-driven miRs coinciding with tumor-derived miRs can blunt anticipated changes in expression profiles following surgical resection.
Collapse
Affiliation(s)
| | - Zachary B Abrams
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Kelly Regan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Paolo Fadda
- Department of Molecular Virology, Immunology and Medical Genetics, The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Alicia Terando
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Joseph Markowitz
- Department of Medicine, The Ohio State University, Columbus, OH, USA
| | - Doreen Agnese
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Philip Payne
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - William E Carson
- Department of Surgery, The Ohio State University, Columbus, OH, USA.,Department of Molecular Virology, Immunology and Medical Genetics, The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Kim JH, Ahn JH, Lee M. Upregulation of MicroRNA-1246 Is Associated with BRAF Inhibitor Resistance in Melanoma Cells with Mutant BRAF. Cancer Res Treat 2017; 49:947-959. [PMID: 28052651 PMCID: PMC5654168 DOI: 10.4143/crt.2016.280] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 12/19/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose Intrinsic and acquired resistance limit the therapeutic benefits of inhibitors of oncogenic BRAF in melanoma. To identify microRNAs (miRNAs) associated with resistance to a BRAF inhibitor, we compared miRNA expression levels in three cell lines with different BRAF inhibitor sensitivity. Materials and Methods miRNA microarray analysis was conducted to compare miRNA expression levels. Real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was performed to confirm the expression of differentially expressed miRNAs. The cellular effects of miR-1246 were further examined by MTT assay, immunoblotting analysis, cell cycle analysis, flow cytometric assay of apoptosis, and autophagy assay. Results The miRNA microarray analysis and qRT-PCR identified five miRNAs (miR-3617, miR-92a-1, miR-1246, miR-193b-3p, and miR-17-3p) with expression that was consistently altered in two BRAF inhibitor-resistant cell lines. Among the five miRNAs, a miR-1246 mimic significantly reduced the antiproliferative effects of the BRAF inhibitor PLX4720 in BRAF inhibitor–resistant A375P (A375P/Mdr) cells, suggesting that miR-1246 upregulation confers acquired resistance to BRAF inhibition. In particular, apoptosis was identified as a major type of cell death in miR-1246–transfected cells; however, necrosis predominated in mimic-control-transfected cells, indicating that the resistance to PLX4720 in miR-1246 mimic-transfected cells is predominantly due to a reduction in necrosis. Furthermore, we found that miR-1246 promoted G2/M arrest through autophagy as a way to escape cell death by necrosis and apoptosis in response to PLX4720. The promotion of BRAF inhibitor resistance by miR-1246 was associated with lowered levels of p-ERK. Conclusion These results suggest that miR-1246 may be a potential therapeutic target in melanoma with acquired resistance to BRAF inhibitors.
Collapse
Affiliation(s)
- Jae-Hyeon Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Jun-Ho Ahn
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| |
Collapse
|
22
|
Larsen AC. Conjunctival malignant melanoma in Denmark: epidemiology, treatment and prognosis with special emphasis on tumorigenesis and genetic profile. Acta Ophthalmol 2016; 94 Thesis 1:1-27. [PMID: 27192168 DOI: 10.1111/aos.13100] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conjunctival malignant melanoma is a rare disease associated with considerable mortality. Most published data have been based on case reports or series of referred patients. In addition, very little is known about the genetic and epigenetic profile of conjunctival melanoma and the resemblance to uveal, cutaneous and mucosal melanoma. The aim was to determine the incidence rate of conjunctival melanoma, and to relate clinicopathological features and treatment to prognosis. A further aim was to determine the prevalence of BRAF mutations in conjunctival melanoma, to determine whether BRAF mutations are early events in pathogenesis, and relate clinicopathological features and prognosis to BRAF-mutation status. Finally, we wanted to identify tumour-specific and prognostic microRNAs in conjunctival melanoma, and to compare these with the microRNA expression of other melanoma subtypes. In order to investigate these rare tumours, we studied all the conjunctival melanomas that had been surgically removed in Denmark over a period of 52 years (1960-2012). Tissue samples, clinical files, pathology reports and follow-up data were collected and re-evaluated. Using droplet digital polymerase chain reaction and immunohistochemistry, we investigated BRAF mutations; and using microRNA expression profiling, we investigated differentially expressed microRNAs. The overall incidence of conjunctival melanoma was 0.5/1 000 000/year, and it increased in Denmark over 52 years. The increase was mainly caused by an increase in older patients (>65 years) and bulbar lesions. Clinicopathological features significantly associated with a poor prognosis were extrabulbar location, involvement of adjacent tissue structures, tumour thickness exceeding 2 mm and local tumour recurrence. Patients undergoing incisional biopsy and/or treatment involving excision without adjuvant therapy fared worse than patients treated with excision and any type of adjuvant treatment. We found that 35% (39/110) of conjunctival melanomas were BRAF-mutated, and the incidence of BRAF mutations was constant over time. BRAF-mutation status corresponded in conjunctival melanoma and paired premalignant lesions. BRAF mutations were more frequent in males, in young patients, and in tumours with a sun-exposed tumour location (bulbar conjunctiva or caruncle), with a mixed or non-pigmented colour, with absence of primary acquired melanosis, and with origin in a nevus. Immunohistochemistry was able to accurately detect BRAF V600E mutations. In univariate analysis, distant metastatic disease was associated with BRAF mutations. No prognostic associations with BRAF mutations were identified in multivariate analyses. MicroRNA expression analysis revealed 25 tumour-specific microRNAs in conjunctival melanoma. Five possibly oncogenic miRNAs (miR-20b-5p, miR-146b-5p, miR-146a-5p, miR-506-3p and miR-509-3p) were up-regulated. Seven microRNAs (miR-30d-5p, miR-138-5p, miR-146a-5p, miR-500a-5p, miR-501-3p, miR-501-5p and miR-502-3p) were significantly and simultaneously up-regulated in both stage T1 and stage T2 tumours, and were associated with increased tumour thickness. The expression of the 25 tumour-specific microRNAs did not differ significantly between conjunctival melanoma and oral or nasal mucosal melanoma. In conclusion, the incidence of conjunctival melanoma increased in the Danish population from 1960 to 2012. From our findings of a distinct pattern of BRAF mutations and differentially expressed microRNAs, it is evident that conjunctival melanoma is closely related to cutaneous and other mucosal melanomas and bears less resemblance to uveal melanomas. This means that conjunctival melanoma patients may benefit from therapies that are effective for cutaneous and mucosal melanoma. Additionally, the identification of several up-regulated microRNAs may prove to be useful as prognostic or therapeutic targets in conjunctival melanoma.
Collapse
Affiliation(s)
- Ann-Cathrine Larsen
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|