1
|
Joglekar MM, Bekker NJ, Koloko Ngassie ML, Vonk JM, Borghuis T, Reinders-Luinge M, Bakker J, Woldhuis RR, Pouwels SD, Melgert BN, Timens W, Brandsma CA, Burgess JK. The lung extracellular matrix protein landscape in severe early-onset and moderate chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2024; 327:L304-L318. [PMID: 38915286 DOI: 10.1152/ajplung.00332.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular matrix (ECM) remodeling has been implicated in the irreversible obstruction of airways and destruction of alveolar tissue in chronic obstructive pulmonary disease (COPD). Studies investigating differences in the lung ECM in COPD have mainly focused on some collagens and elastin, leaving an array of ECM components unexplored. We investigated the differences in the ECM landscape comparing severe-early onset (SEO)-COPD and moderate COPD to control lung tissue for collagen type I α chain 1 (COL1A1), collagen type VI α chain 1 (COL6A1); collagen type VI α chain 2 (COL6A2), collagen type XIV α chain 1 (COL14A1), fibulin 2 and 5 (FBLN2 and FBLN5), latent transforming growth factor β binding protein 4 (LTBP4), lumican (LUM), versican (VCAN), decorin (DCN), and elastin (ELN) using image analysis and statistical modeling. Percentage area and/or mean intensity of expression of LUM in the parenchyma, and COL1A1, FBLN2, LTBP4, DCN, and VCAN in the airway walls, was proportionally lower in COPD compared to controls. Lowered levels of most ECM proteins were associated with decreasing forced expiratory volume in 1 s (FEV1) measurements, indicating a relationship with disease severity. Furthermore, we identified six unique ECM signatures where LUM and COL6A1 in parenchyma and COL1A1, FBLN5, DCN, and VCAN in airway walls appear essential in reflecting the presence and severity of COPD. These signatures emphasize the need to examine groups of proteins to represent an overall difference in the ECM landscape in COPD that are more likely to be related to functional effects than individual proteins. Our study revealed differences in the lung ECM landscape between control and COPD and between SEO and moderate COPD signifying distinct pathological processes in the different subgroups.NEW & NOTEWORTHY Our study identified chronic obstructive pulmonary disease (COPD)-associated differences in the lung extracellular matrix (ECM) composition. We highlight the compartmental differences in the ECM landscape in different subtypes of COPD. The most prominent differences were observed for severe-early onset COPD. Moreover, we identified unique ECM signatures that describe airway walls and parenchyma providing insight into the intertwined nature and complexity of ECM changes in COPD that together drive ECM remodeling and may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Nicolaas J Bekker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maunick Lefin Koloko Ngassie
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Marjan Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Janna Bakker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Roy R Woldhuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Barbro N Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences, KOLFF Institute, Groningen, The Netherlands
| |
Collapse
|
2
|
Hu X, Jiang W, Wang Z, Li L, Hu Z. NOX1 Negatively Modulates Fibulin-5 in Vascular Smooth Muscle Cells to Affect Aortic Dissection. Biol Pharm Bull 2019; 42:1464-1470. [DOI: 10.1248/bpb.b18-01012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University
| | - Luocheng Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University
| |
Collapse
|
3
|
Mecham RP. Elastin in lung development and disease pathogenesis. Matrix Biol 2018; 73:6-20. [PMID: 29331337 DOI: 10.1016/j.matbio.2018.01.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/07/2018] [Indexed: 12/24/2022]
Abstract
Elastin is expressed in most tissues that require elastic recoil. The protein first appeared coincident with the closed circulatory system, and was critical for the evolutionary success of the vertebrate lineage. Elastin is expressed by multiple cell types in the lung, including mesothelial cells in the pleura, smooth muscle cells in airways and blood vessels, endothelial cells, and interstitial fibroblasts. This highly crosslinked protein associates with fibrillin-containing microfibrils to form the elastic fiber, which is the physiological structure that functions in the extracellular matrix. Elastic fibers can be woven into many different shapes depending on the mechanical needs of the tissue. In large pulmonary vessels, for example, elastin forms continuous sheets, or lamellae, that separate smooth muscle layers. Outside of the vasculature, elastic fibers form an extensive fiber network that originates in the central bronchi and inserts into the distal airspaces and visceral pleura. The fibrous cables form a looping system that encircle the alveolar ducts and terminal air spaces and ensures that applied force is transmitted equally to all parts of the lung. Normal lung function depends on proper secretion and assembly of elastin, and either inhibition of elastin fiber assembly or degradation of existing elastin results in lung dysfunction and disease.
Collapse
Affiliation(s)
- Robert P Mecham
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Van Dijk EM, Culha S, Menzen MH, Bidan CM, Gosens R. Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model. Front Physiol 2017; 7:657. [PMID: 28101062 PMCID: PMC5209351 DOI: 10.3389/fphys.2016.00657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
Background: COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive ex vivo Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes. Methods: Lungs of C57Bl/6J mice were sliced and treated ex vivo with elastase (2.5 μg/ml) or H2O2 (200 μM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed. Results: Following elastase, but not H2O2 treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas H2O2 stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi. Conclusion: Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction. This finding may have implications for COPD, as the amount of elastin fiber and parenchymal tissue disruption is associated with disease severity. Therefore, we suggest that PCLS can be used to model certain aspects of COPD pathophysiology and that the parenchymal tissue damage observed in COPD contributes to lung function decline by disrupting airway biomechanics. Targeting the parenchymal compartment may therefore be a promising therapeutic target in the treatment of COPD.
Collapse
Affiliation(s)
- Eline M Van Dijk
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Sule Culha
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Cécile M Bidan
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble, France
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
5
|
Baarsma HA, Skronska-Wasek W, Mutze K, Ciolek F, Wagner DE, John-Schuster G, Heinzelmann K, Günther A, Bracke KR, Dagouassat M, Boczkowski J, Brusselle GG, Smits R, Eickelberg O, Yildirim AÖ, Königshoff M. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. J Exp Med 2016; 214:143-163. [PMID: 27979969 PMCID: PMC5206496 DOI: 10.1084/jem.20160675] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/16/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT-β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-β, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of β-catenin-driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal-epithelial cross talk in COPD pathogenesis, which is amenable to therapy.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Florian Ciolek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Darcy E Wagner
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Gerrit John-Schuster
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Katharina Heinzelmann
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | | | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | | | | | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, 3000 Rotterdam, Netherlands
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Ali Ö Yildirim
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| |
Collapse
|