1
|
Zeng Y, Guo W, Xu G, Wang Q, Feng L, Long S, Liang F, Huang Y, Lu X, Li S, Zhou J, Burgunder JM, Pang J, Pei Z. Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1443-51. [PMID: 27110099 PMCID: PMC4835117 DOI: 10.2147/dddt.s94666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Huntington's disease is an autosomal-dominant neurodegenerative disorder, with chorea as the most prominent manifestation. The disease is caused by abnormal expansion of CAG codon repeats in the IT15 gene, which leads to the expression of a glutamine-rich protein named mutant Huntingtin (Htt). Because of its devastating disease burden and lack of valid treatment, development of more effective therapeutics for Huntington's disease is urgently required. Xyloketal B, a natural product from mangrove fungus, has shown protective effects against toxicity in other neurodegenerative disease models such as Parkinson's and Alzheimer's diseases. To identify potential neuroprotective molecules for Huntington's disease, six derivatives of xyloketal B were screened in a Caenorhabditis elegans Huntington's disease model; all six compounds showed a protective effect. Molecular docking studies indicated that compound 1 could bind to residues GLN369 and GLN393 of the mutant Htt protein, forming a stable trimeric complex that can prevent the formation of mutant Htt aggregates. Taken together, we conclude that xyloketal derivatives could be novel drug candidates for treating Huntington's disease. Molecular target analysis is a good method to simulate the interaction between proteins and drug compounds. Further, protective candidate drugs could be designed in future using the guidance of molecular docking results.
Collapse
Affiliation(s)
- Yixuan Zeng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangzhou Center, Chinese Huntington's Disease Network, Guangzhou, Guangdong, People's Republic of China
| | - Wenyuan Guo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guangqing Xu
- Department of Rehabilitation, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Qinmei Wang
- Key laboratory on Assisted Circulation, Ministry of Health, Department of Cardiovascular Medicine of the First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Luyang Feng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangzhou Center, Chinese Huntington's Disease Network, Guangzhou, Guangdong, People's Republic of China
| | - Simei Long
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fengyin Liang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yi Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xilin Lu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shichang Li
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiebin Zhou
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jean-Marc Burgunder
- Swiss Huntington's Disease Center, Department of Neurology, University of Bern, Bern, Switzerland
| | - Jiyan Pang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangzhou Center, Chinese Huntington's Disease Network, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Lei LF, Yang GP, Wang JL, Chuang DM, Song WH, Tang BS, Jiang H. Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism Relat Disord 2016; 26:55-61. [PMID: 26997655 DOI: 10.1016/j.parkreldis.2016.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is one of 10 known polyglutamine (polyQ) diseases. In Drosophila and rat models of polyQ diseases, histone deacetylation (HDAC) inhibitors improved locomotor function and survival time by increasing histone acetylation levels and modulating gene expression. Valproic acid (VPA) is a pan-HDAC inhibitor used clinically to treat bipolar and seizure disorders. We evaluated the clinical safety and efficacy of VPA treatment for SCA3/MJD patients. METHODS First, a randomized, open-label, dose-escalation method was used to evaluate tolerance to single-dose VPA administration in 12 SCA3/MJD patients. Patients were randomly assigned to three groups of four subjects, each with an oral dosage of 400 mg, 600 mg, or 800 mg (twice daily (bid) for one day). VPA was well-tolerated for one-dose by all patient groups. Second, a randomized, double-blind, placebo-controlled, dose-controlled study evaluated the safety and efficacy of multi-dose VPA (oral administration, twice daily (bid) for 12 weeks) in 36 SCA3/MJD patients. Patients received either low-dose VPA (800 mg/day), high-dose VPA (1200 mg/day), or placebo (n = 12 subjects per group). Symptoms were evaluated using the Scale for Assessment and Rating of Ataxia (SARA). RESULTS Multi-dose VPA treatment improved SARA measures of locomotor function. Major adverse effects included dizziness and loss of appetite. CONCLUSIONS VPA is a potentially beneficial agent for the treatment of SCA3/MJD. These results also provide insight into possible future therapeutics for polyQ diseases.
Collapse
Affiliation(s)
- Li-Fang Lei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China; Department of Neurology, Xiangya 3rd Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Guo-Ping Yang
- Clinical Pharmacology Center, Xiangya 3rd Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| | - Wei-Hong Song
- Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, People's Republic of China; State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, People's Republic of China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, People's Republic of China; State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, People's Republic of China.
| |
Collapse
|
3
|
Calamini B, Lo DC, Kaltenbach LS. Experimental models for identifying modifiers of polyglutamine-induced aggregation and neurodegeneration. Neurotherapeutics 2013; 10:400-15. [PMID: 23700210 PMCID: PMC3701774 DOI: 10.1007/s13311-013-0195-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Huntington's disease (HD) typifies a class of inherited neurodegenerative disorders in which a CAG expansion in a single gene leads to an extended polyglutamine tract and misfolding of the expressed protein, driving cumulative neural dysfunction and degeneration. HD is invariably fatal with symptoms that include progressive neuropsychiatric and cognitive impairments, and eventual motor disability. No curative therapies yet exist for HD and related polyglutamine diseases; therefore, substantial efforts have been made in the drug discovery field to identify potential drug and drug target candidates for disease-modifying treatment. In this context, we review here a range of early-stage screening approaches based in in vitro, cellular, and invertebrate models to identify pharmacological and genetic modifiers of polyglutamine aggregation and induced neurodegeneration. In addition, emerging technologies, including high-content analysis, three-dimensional culture models, and induced pluripotent stem cells are increasingly being incorporated into drug discovery screening pipelines for protein misfolding disorders. Together, these diverse screening strategies are generating novel and exciting new probes for understanding the disease process and for furthering development of therapeutic candidates for eventual testing in the clinical setting.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| | - Donald C. Lo
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| | - Linda S. Kaltenbach
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| |
Collapse
|
4
|
Newman T, Sinadinos C, Johnston A, Sealey M, Mudher A. Using Drosophila models of neurodegenerative diseases for drug discovery. Expert Opin Drug Discov 2012; 6:129-40. [PMID: 22647132 DOI: 10.1517/17460441.2011.549124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are increasing in prevalence as our aging population increases in size. Despite this, currently there are no disease-modifying drugs available for the treatment of these conditions. Drosophila melanogaster is a highly tractable model organism that has been successfully used to emulate various aspects of these diseases in vivo. These Drosophila models have not been fully exploited in drug discovery and design strategies. AREAS COVERED This review explores how Drosophila models can be used to facilitate drug discovery. Specifically, we review their uses as a physiologically-relevant medium to high-throughput screening tool for the identification of therapeutic compounds and discuss how they can aid drug discovery by highlighting disease mechanisms that may serve as druggable targets in the future. The reader will appreciate how the various attributes of Drosophila make it an unsurpassed model organism and how Drosophila models of neurodegeneration can contribute to drug discovery in a variety of ways. EXPERT OPINION Drosophila models of human neurodegenerative diseases can make a significant contribution to the unmet need of disease-modifying therapeutic intervention for the treatment of these increasingly common neurodegenerative conditions.
Collapse
Affiliation(s)
- Tracey Newman
- University of Southampton, School of Medicine, Life Science Building 85, Southampton, SO17 1BJ, UK +44 2380 597642 ;
| | | | | | | | | |
Collapse
|
5
|
Perlman SL. Treatment and management issues in ataxic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:635-54. [PMID: 21827924 DOI: 10.1016/b978-0-444-51892-7.00046-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Environmental Enrichment Reduces Neuronal Intranuclear Inclusion Load But Has No Effect on Messenger RNA Expression in a Mouse Model of Huntington Disease. J Neuropathol Exp Neurol 2010; 69:817-27. [DOI: 10.1097/nen.0b013e3181ea167f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
7
|
Ge P, Luo Y, Wang H, Ling F. Anti-protein aggregation is a potential target for preventing delayed neuronal death after transient ischemia. Med Hypotheses 2009; 73:994-5. [DOI: 10.1016/j.mehy.2008.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 10/11/2008] [Accepted: 10/23/2008] [Indexed: 01/25/2023]
|
8
|
Huang B, Schiefer J, Sass C, Kosinski CM, Kochanek S. Inducing huntingtin inclusion formation in primary neuronal cell culture and in vivo by high-capacity adenoviral vectors expressing truncated and full-length huntingtin with polyglutamine expansion. J Gene Med 2008; 10:269-79. [PMID: 18067195 DOI: 10.1002/jgm.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (htt) gene. Vector-mediated delivery of N-terminal fragments of mutant htt has been used to study htt function in vitro and to establish HD models in rats. Due to the large size of the htt cDNA vector-mediated delivery of full-length htt has not been achieved so far. METHODS High-capacity adenoviral (HC-Ad) vectors were generated expressing mutant and wild-type versions of N-terminal truncated and full-length htt either in vitro in primary neuronal cells or in the striatum of mice. RESULTS In vitro these vectors were used for transduction of primary neuronal cells isolated from E17 mouse embryos. Expression of mutant htt resulted in the formation of htt inclusions, a surrogate marker of the HD pathology. Kinetics of generation and localization of htt inclusions differed between truncated and full-length htt carrying identical mutations. Following injection into the striatum vector-mediated expression of mutant truncated htt led to prominent accumulation of htt inclusions in cell nuclei, while inclusions formed upon expression of mutant full-length htt localized to the cytoplasm. CONCLUSIONS These results indicate that HC-Ad vector-mediated in vitro and in vivo delivery of truncated and full-length mutant htt results in prominent inclusion formation in neuronal cells but in different cell compartments. These vectors will be useful tools for studying HD and may be used to generate large animal HD models.
Collapse
Affiliation(s)
- Bin Huang
- Division of Gene Therapy, University of Ulm, Helmholtzstrasse 8/1, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
9
|
van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington's disease. BMC Neurosci 2008; 9:34. [PMID: 18380890 PMCID: PMC2335112 DOI: 10.1186/1471-2202-9-34] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 04/01/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder predominantly affecting the cerebral cortex and striatum. Transgenic mice (R6/1 line), expressing a CAG repeat encoding an expanded polyglutamine tract in the N-terminus of the huntingtin protein, closely model HD. We have previously shown that environmental enrichment of these HD mice delays the onset of motor deficits. Furthermore, wheel running initiated in adulthood ameliorates the rear-paw clasping motor sign, but not an accelerating rotarod deficit. RESULTS We have now examined the effects of enhanced physical activity via wheel running, commenced at a juvenile age (4 weeks), with respect to the onset of various behavioral deficits and their neuropathological correlates in R6/1 HD mice. HD mice housed post-weaning with running wheels only, to enhance voluntary physical exercise, have delayed onset of a motor co-ordination deficit on the static horizontal rod, as well as rear-paw clasping, although the accelerating rotarod deficit remains unaffected. Both wheel running and environmental enrichment rescued HD-induced abnormal habituation of locomotor activity and exploratory behavior in the open field. We have found that neither environment enrichment nor wheel running ameliorates the shrinkage of the striatum and anterior cingulate cortex (ACC) in HD mice, nor the overall decrease in brain weight, measured at 9 months of age. At this age, the density of ubiquitinated protein aggregates in the striatum and ACC is also not significantly ameliorated by environmental enrichment or wheel running. CONCLUSION These results indicate that enhanced voluntary physical activity, commenced at an early presymptomatic stage, contributes to the positive effects of environmental enrichment. However, sensory and cognitive stimulation, as well as motor stimulation not associated with running, may constitute major components of the therapeutic benefits associated with enrichment. Comparison of different environmental manipulations, performed in specific time windows, can identify critical periods for the induction of neuroprotective 'brain reserve' in animal models of HD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Anton van Dellen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | | | | | | | | |
Collapse
|
10
|
Gitler AD. Beer and bread to brains and beyond: can yeast cells teach us about neurodegenerative disease? Neurosignals 2007; 16:52-62. [PMID: 18097160 DOI: 10.1159/000109759] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For millennia, humans have harnessed the astonishing power of yeast, producing such culinary masterpieces as bread, beer and wine. Therefore, in this new millennium, is it very farfetched to ask if we can also use yeast to unlock some of the modern day mysteries of human disease? Remarkably, these seemingly simple cells possess most of the same basic cellular machinery as the neurons in the brain. We and others have been using the baker's yeast, Saccharomyces cerevisiae, as a model system to study the mechanisms of devastating neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's and amyotrophic lateral sclerosis. While very different in their pathophysiology, they are collectively referred to as protein-misfolding disorders because of the presence of misfolded and aggregated forms of various proteins in the brains of affected individuals. Using yeast genetics and the latest high-throughput screening technologies, we have identified some of the potential causes underpinning these disorders and discovered conserved genes that have proven effective in preventing neuron loss in animal models. Thus, these genes represent new potential drug targets. In this review, I highlight recent work investigating mechanisms of cellular toxicity in a yeast Parkinson's disease model and discuss how similar approaches are being applied to additional neurodegenerative diseases.
Collapse
Affiliation(s)
- Aaron D Gitler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Abstract
BACKGROUND The progressive ataxias are a diverse group of neurologic diseases that share features of degeneration of the cerebellum and its inflow/outflow pathways but differ in etiology, course, and associated noncerebellar system involvement. Some will have treatable causes, but for most, the pathophysiology is incompletely known. REVIEW SUMMARY Treatment strategies will include (1) definitive therapy when available, (2) symptomatic treatment and prevention of complications, and (3) rehabilitation and support resources. The physician will have to decide whether to introduce or approve the use of therapies based on as yet-unproven mechanisms or the use of complementary medicine approaches. CONCLUSIONS There are as yet no drugs that have been approved by the Food and Drug Administration for the treatment of the progressive ataxias and relatively few disease-modifying therapies, but symptomatic and rehabilitation interventions can greatly improve the quality of life of individuals with these disabling neurodegenerative disorders.
Collapse
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California, Los Angeles 90095, USA.
| |
Collapse
|
12
|
Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL. SUMO modification of Huntingtin and Huntington's disease pathology. Science 2004; 304:100-4. [PMID: 15064418 DOI: 10.1126/science.1092194] [Citation(s) in RCA: 527] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Huntington's disease (HD) is characterized by the accumulation of a pathogenic protein, Huntingtin (Htt), that contains an abnormal polyglutamine expansion. Here, we report that a pathogenic fragment of Htt (Httex1p) can be modified either by small ubiquitin-like modifier (SUMO)-1 or by ubiquitin on identical lysine residues. In cultured cells, SUMOylation stabilizes Httex1p, reduces its ability to form aggregates, and promotes its capacity to repress transcription. In a Drosophila model of HD, SUMOylation of Httex1p exacerbates neurodegeneration, whereas ubiquitination of Httex1p abrogates neurodegeneration. Lysine mutations that prevent both SUMOylation and ubiquitination of Httex1p reduce HD pathology, indicating that the contribution of SUMOylation to HD pathology extends beyond preventing Htt ubiquitination and degradation.
Collapse
Affiliation(s)
- Joan S Steffan
- Department of Psychiatry and Human Behavior, Gillespie 2121, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The spinocerebellar degenerations/ataxias (SCAs) are a diverse group of rare, slowly progressive, neurological diseases, often inherited but of incompletely understood pathophysiology, which affect the cerebellum and its related pathways. They have few animal models and share no reliable biomarkers. They have, as yet, no universally validated rating scale for use in clinical trials. In the past 25 years, there have been, at most, 18 controlled (Class 1) trials for ataxia, which have focused on neurotransmitter mechanisms. There is currently only one National Institute of Neurological Disorders and Stroke-sponsored drug trial for ataxia (Phase I study of idebenone in Friedreich's ataxia). There are, as yet, no FDA-approved drugs for SCA. Current treatment practices encompass rehabilitation interventions and off-label use of symptomatic medications [1,2].
Collapse
|