1
|
Alfheeaid HA, Raheem D, Ahmed F, Alhodieb FS, Alsharari ZD, Alhaji JH, BinMowyna MN, Saraiva A, Raposo A. Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods 2022; 11:3402. [PMID: 36360016 PMCID: PMC9655280 DOI: 10.3390/foods11213402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Excessive sodium (salt) intake in our diet is a main contributor to hypertension and a major risk factor for cardiovascular illnesses. As a result, research has made great efforts to develop salt alternatives, and Salicornia spp. offers a very high potential in the food industry for its promising functional characteristics. This review focuses on the nutritional profile, health effects and commercial potential of three specific species of the Salicornia genus: S. bigelovii, S. brachiata and S. herbacea. It also addresses the methods that are used to produce them as salt substitutes. Owing to the antinutritional and anti-inflammatory effects of its bioactive compounds, Salicornia spp. can serve as an organic biological preservative in foods with better consumer appeal when compared with chemical preservatives that are common in the food industry. Overall, the commercial use of these underutilized species will help to improve food security.
Collapse
Affiliation(s)
- Hani A. Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Faiyaz Ahmed
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fahad S. Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Jwaher Haji Alhaji
- Department of Health Sciences, College of Applied Studies and Community Service, King Saud University, Riyadh 4545, Saudi Arabia
| | - Mona N. BinMowyna
- College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
2
|
Dauvilliers Y, Šonka K, Bogan RK, Partinen M, Del Rio Villegas R, Foldvary-Schaefer N, Skowronski R, Chen A, Black J, Skobieranda F, Thorpy MJ. Changes in Cataplexy Frequency in a Clinical Trial of Lower-Sodium Oxybate with Taper and Discontinuation of Other Anticataplectic Medications. CNS Drugs 2022; 36:633-647. [PMID: 35635687 PMCID: PMC9213292 DOI: 10.1007/s40263-022-00926-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lower-sodium oxybate (LXB) is an oxybate medication with the same active moiety as sodium oxybate (SXB) and a unique composition of cations, resulting in 92% less sodium. LXB was shown to improve cataplexy and excessive daytime sleepiness in people with narcolepsy in a placebo-controlled, double-blind, randomized withdrawal study (NCT03030599). Additional analyses of data from this study were conducted to explore the effects of LXB on cataplexy, including the clinical course and feasibility of transition from other anticataplectics to LXB monotherapy. OBJECTIVE The aim of these analyses was to evaluate cataplexy frequency during initiation/optimization of LXB and taper/discontinuation of prior antidepressant/anticataplectic medications. METHODS Eligible participants (adults aged 18-70 years with narcolepsy with cataplexy) entered the study taking SXB only (group A), SXB + other anticataplectics (group B), or anticataplectic medication other than SXB (group C), or were cataplexy-treatment naive (group D). LXB was initiated/optimized during a 12-week, open-label, optimized treatment and titration period (OLOTTP). Other anticataplectics were tapered/discontinued during weeks 3-10 of OLOTTP. A 2-week stable-dose period (SDP; during which participants took a stable dose of open-label LXB) and 2-week double-blind randomized withdrawal period (during which participants were randomized to continue LXB treatment or switch to placebo) followed OLOTTP. Treatment-emergent adverse events (TEAEs) were recorded throughout the duration of the study. RESULTS At the beginning of OLOTTP, median weekly cataplexy attacks were lower in participants taking SXB at study entry (SXB only [2.00]; SXB + other anticataplectics [0.58]) versus participants who were taking other anticataplectics (3.50) or were anticataplectic naive (5.83). Median weekly cataplexy attacks decreased during weeks 1-2 of OLOTTP in all groups. Increased cataplexy frequency was observed in participants tapering/discontinuing other anticataplectics during weeks 3-10 and was more prominent in participants taking other anticataplectics alone compared with those taking SXB plus other anticataplectics. Cataplexy frequency decreased throughout initiation/optimization in anticataplectic-naive participants. Median number of cataplexy-free days/week at the end of SDP (study week 14) was similar in all groups (6.0, 6.1, 6.0, and 6.2 in groups A, B, C, and D, respectively). During OLOTTP and SDP, TEAEs of worsening cataplexy were reported in 0%, 47.8%, 16.7%, and 2.2% of participants in groups A, B, C, and D, respectively; most TEAEs of worsening cataplexy were reported during tapering/discontinuation of other anticataplectics. CONCLUSIONS LXB monotherapy was effective in reducing cataplexy and increasing cataplexy-free days. These results illustrate the feasibility of switching from SXB to LXB while tapering/discontinuing other anticataplectics. TRIAL REGISTRATION A Study of the Efficacy and Safety of JZP-258 in Subjects With Narcolepsy With Cataplexy; https://clinicaltrials.gov/ct2/show/NCT03030599 ; clinicaltrials.gov identifier: NCT03030599.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, 80 Avenue Augustin Fliche, 34295, Montpellier, France.
- University of Montpellier, INSERM Institute Neuroscience Montpellier (INM), Montpellier, France.
| | - Karel Šonka
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Richard K Bogan
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Markku Partinen
- Helsinki Sleep Clinic, Terveystalo Healthcare, Helsinki, Finland
- Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | - Abby Chen
- Jazz Pharmaceuticals, Palo Alto, CA, USA
| | - Jed Black
- Jazz Pharmaceuticals, Palo Alto, CA, USA
- Stanford University Center for Sleep Science and Medicine, Redwood City, CA, USA
| | | | | |
Collapse
|
3
|
Dauvilliers Y, Bogan RK, Šonka K, Partinen M, Foldvary-Schaefer N, Thorpy MJ. Calcium, Magnesium, Potassium, and Sodium Oxybates Oral Solution: A Lower-Sodium Alternative for Cataplexy or Excessive Daytime Sleepiness Associated with Narcolepsy. Nat Sci Sleep 2022; 14:531-546. [PMID: 35378745 PMCID: PMC8976528 DOI: 10.2147/nss.s279345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Lower-sodium oxybate (LXB) is an oxybate medication approved to treat cataplexy or excessive daytime sleepiness (EDS) in patients with narcolepsy 7 years of age and older in the United States. LXB was developed as an alternative to sodium oxybate (SXB), because the incidence of cardiovascular comorbidities is higher in patients with narcolepsy and there is an elevated cardiovascular risk associated with high sodium consumption. LXB has a unique formulation of calcium, magnesium, potassium, and sodium ions, containing 92% less sodium than SXB. Whereas the active oxybate moiety is the same for LXB and SXB, their pharmacokinetic profiles are not bioequivalent; therefore, a phase 3 trial in participants with narcolepsy was conducted for LXB. This review summarizes the background on oxybate as a therapeutic agent and its potential mechanism of action on the gamma-aminobutyric acid type B (GABAB) receptor at noradrenergic and dopaminergic neurons, as well as at thalamocortical neurons. The rationale leading to the development of LXB as a lower-sodium alternative to SXB and the key efficacy and safety data supporting its approval for both adult and pediatric patients with narcolepsy are also discussed. LXB was approved in August 2021 in the United States for the treatment of idiopathic hypersomnia in adults. Potential future developments in the field of oxybate medications may include novel formulations and expanded indications for other diseases.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France.,University of Montpellier, INSERM Institute Neuroscience Montpellier (INM), Montpellier, France
| | - Richard K Bogan
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Karel Šonka
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Markku Partinen
- Helsinki Sleep Clinic, Terveystalo Healthcare, and Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | | | - Michael J Thorpy
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Wu J, Yin W, Huang Z, Zhang Y, Jia J, Cheng H, Kang F, Huang K, Sun T, Tian J, Xu X, Zhang Y. Design, Synthesis, and Biological Evaluation of Organic Nitrite (NO 2-) Donors as Potential Anticerebral Ischemia Agents. J Med Chem 2021; 64:10919-10933. [PMID: 34292749 DOI: 10.1021/acs.jmedchem.1c00282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The treatment of ischemic stroke (IS) remains a big challenge in clinics, and it is urgently needed to develop novel, safe, and effective medicines against IS. Here, we report the design, synthesis, and biological evaluation of organic NO2- donors as potential agents for the treatment of IS. The representative compound 4a was able to slowly generate low concentrations of NO2- by reaction with a thiol-containing nucleophile, and the NO2- was selectively converted into NO under ischemic/hypoxia conditions to protect primary rat neurons from oxygen-glucose deprivation and recovery (OGD/R)-induced cytotoxicity by enhancing the Nrf2 signaling and activating the NO/cGMP/PKG pathway. Treatment with 4a at 2 h before or after ischemia mitigated the ischemia/reperfusion-induced brain injury in middle cerebral artery occlusion (MCAO) rats by producing NO and enhancing Nrf2 signaling. Furthermore, 4a significantly promoted endothelial cell proliferation and angiogenesis within the ischemic penumbra. Our findings suggest that this type of NO2- donors, like 4a, may be valuable to fight IS and other ischemic diseases.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Wei Yin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yinqiu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Huimin Cheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Fenghua Kang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Kai Huang
- The Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Tao Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
5
|
Dubray C, Maincent P, Milon JY. From the pharmaceutical to the clinical: the case for effervescent paracetamol in pain management. A narrative review. Curr Med Res Opin 2021; 37:1039-1048. [PMID: 33819115 DOI: 10.1080/03007995.2021.1902297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Paracetamol has an established place in the management of mild-to-moderate pain, but has certain limitations, including varying bioavailability, and potential hepatotoxicity if taken in overdose. Effervescent formulations may help to overcome these limitations. METHODS Pubmed searches, with no limits on date or language, were conducted in February 2020. Further references were identified from the reference lists of retrieved articles, and from the authors' knowledge of the field. RESULTS Effervescent formulations contain an organic acid (usually citric acid) and carbonate or bicarbonate salts (usually sodium bicarbonate). Upon contact with water, these react to form carbon dioxide, which facilitates the disintegration of the tablet and dissolution of the active drug. Moreover, sodium bicarbonate dose-dependently increases gastric emptying, which together with rapid dissolution facilitates drug absorption. In pharmacokinetic studies, effervescent formulations result in faster absorption of paracetamol than conventional oral formulations, and this translates into a faster onset of analgesia in clinical trials. Effervescent paracetamol has a favorable safety profile, with good tolerability. Importantly, the sodium content of some preparations does not appear to increase cardiovascular risk under real world conditions. Effervescent formulations may also offer advantages in terms of ease of administration and palatability. CONCLUSIONS Effervescent formulations of paracetamol result in faster drug absorption, and hence more rapid analgesia, than oral tablets, and offer a favorable tolerability and safety profile. The use of such formulations may therefore help to promote appropriate use of paracetamol.
Collapse
Affiliation(s)
- Claude Dubray
- Centre d'Investigation Clinique Inserm CIC 1405, NeuroDol UMR 1107, Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Philippe Maincent
- Faculty of Pharmacy, Pharmaceutical Technology Department, University of Lorraine, Nancy, France
| | | |
Collapse
|
6
|
Gándara del Castillo Á, Herrera Abián M, Vicente Martín C, Fraile Vicente JM, Delgado Juárez R. Prevalence of the need for sodium intake restriction and the use of laxatives in palliative patients. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2018; 110:712-717. [DOI: 10.17235/reed.2018.5432/2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Lopes M, Cavaleiro C, Ramos F. Sodium Reduction in Bread: A Role for Glasswort (Salicornia ramosissimaJ. Woods). Compr Rev Food Sci Food Saf 2017; 16:1056-1071. [DOI: 10.1111/1541-4337.12277] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Maria Lopes
- Pharmacy Faculty; Univ. of Coimbra; Azinhaga de Santa Comba 3000-548 Coimbra Portugal
| | - Carlos Cavaleiro
- Pharmacy Faculty, CNC - Center for Neuroscience and Cell Biology; Univ. of Coimbra; Azinhaga de Santa Comba 3000-548 Coimbra Portugal
| | - Fernando Ramos
- Pharmacy Faculty, CNC - Center for Neuroscience and Cell Biology; Univ. of Coimbra; Azinhaga de Santa Comba 3000-548 Coimbra Portugal
| |
Collapse
|
8
|
Barbosa UA, dos Santos IF, Ferreira SLC, dos Santos AMP. Determination of micro and macro elements in iron supplements used for treatment of anemia and evaluation employing chemometric analysis tools. RSC Adv 2015. [DOI: 10.1039/c5ra03242c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper propose a method using inductively coupled plasma optical emission spectrometry for the determination of micro and macro elements in pharmaceutical formulations used for anemia treatment and evaluation by chemometrics analysis tools.
Collapse
Affiliation(s)
- Uenderson Araujo Barbosa
- Universidade Federal da Bahia
- Instituto de Química
- Salvador
- Brazil
- Instituto Nacional de Ciência e Tecnologia
| | | | - Sergio Luis Costa Ferreira
- Universidade Federal da Bahia
- Instituto de Química
- Salvador
- Brazil
- Instituto Nacional de Ciência e Tecnologia
| | - Ana Maria Pinto dos Santos
- Universidade Federal da Bahia
- Instituto de Química
- Salvador
- Brazil
- Instituto Nacional de Ciência e Tecnologia
| |
Collapse
|