1
|
Rahamathulla M, Murugesan S, Gowda DV, Alamri AH, Ahmed MM, Osmani RAM, Ramamoorthy S, Veeranna B. The Use of Nanoneedles in Drug Delivery: an Overview of Recent Trends and Applications. AAPS PharmSciTech 2023; 24:216. [PMID: 37857918 DOI: 10.1208/s12249-023-02661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Nanoneedles (NN) are growing rapidly as a means of navigating biological membranes and delivering therapeutics intracellularly. Nanoneedle arrays (NNA) are among the most potential resources to achieve therapeutic effects by administration of drugs through the skin. Although this is based on well-established approaches, its implementations are rapidly developing as an important pharmaceutical and biological research phenomenon. This study intends to provide a broad overview of current NNA research, with an emphasis on existing approaches, applications, and types of compounds released by these systems. A nanoneedle-based delivery device with great spatial and temporal accuracy, minimal interference, and low toxicity could transfer biomolecules into living organisms. Due to its vast potential, NN has been widely used as a capable transportation system of many therapeutic active substances, from cancer therapy, vaccine delivery, cosmetics, and bio-sensing nanocarrier drugs to genes. The use of nanoneedles for drug delivery offers new opportunities for the rapid, targeted, and exact administration of biomolecules into cell membranes for high-resolution research of biological systems, and it can treat a wide range of biological challenges. As a result, the literature has analyzed existing patents to emphasize the status of NNA in biological applications.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Santhosh Murugesan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| | - Sathish Ramamoorthy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
2
|
Chen C, Fa Y, Kuo Y, Liu Y, Lin C, Wang X, Lu Y, Chiang Y, Yang C, Wu L, Ho JA. Thiolated Mesoporous Silica Nanoparticles as an Immunoadjuvant to Enhance Efficacy of Intravesical Chemotherapy for Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204643. [PMID: 36638276 PMCID: PMC9982584 DOI: 10.1002/advs.202204643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The characteristics of global prevalence and high recurrence of bladder cancer has led numerous efforts to develop new treatments. The spontaneous voiding and degradation of the chemodrug hamper the efficacy and effectiveness of intravesical chemotherapy following tumor resection. Herein, the externally thiolated hollow mesoporous silica nanoparticles (MSN-SH(E)) is fabricated to serve as a platform for improved bladder intravesical therapy. Enhanced mucoadhesive effect of the thiolated nanovector is confirmed with porcine bladder. The permeation-enhancing effect is also verified, and a fragmented distribution pattern of a tight junction protein, claudin-4, indicates the opening of tight junction. Moreover, MSN-SH(E)-associated reprogramming of M2 macrophages to M1-like phenotype is observed in vitro. The antitumor activity of the mitomycin C (MMC)-loaded nanovector (MMC@MSN-SH(E)) is more effective than that of MMC alone in both in vitro and in vivo. In addition, IHC staining is used to analyze IFN-γ, TGF-β1, and TNF-α. These observations substantiated the significance of MMC@MSN-SH(E) in promoting anticancer activity, holding the great potential for being used in intravesical therapy for non-muscle invasive bladder cancer (NMIBC) due to its mucoadhesivity, enhanced permeation, immunomodulation, and prolonged and very efficient drug exposure.
Collapse
Affiliation(s)
- Cheng‐Che Chen
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
- Department of UrologyTaichung Veterans General Hospital40705TaichungTaiwan
| | - Yu‐Chen Fa
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
| | - Yen‐Yu Kuo
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Yi‐Chun Liu
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
| | - Chih‐Yu Lin
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Xin‐Hui Wang
- Instrumentation CenterNational Taiwan University10617TaipeiTaiwan
| | - Yu‐Huan Lu
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Yu‐Han Chiang
- Department of ChemistryNational Taiwan University10617TaipeiTaiwan
| | - Chia‐Min Yang
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
- Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University300044HsinchuTaiwan
| | - Li‐Chen Wu
- Department of Applied ChemistryNational Chi Nan UniversityPuliNantou54561Taiwan
| | - Ja‐an Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
- Department of ChemistryNational Taiwan University10617TaipeiTaiwan
- Center for Emerging Materials and Advance DevicesNational Taiwan University10617TaipeiTaiwan
- Center for BiotechnologyNational Taiwan University10617TaipeiTaiwan
| |
Collapse
|
3
|
Xiong W, Xiong SH, Chen QL, Linghu KG, Zhao GD, Chu JMT, Wong GTC, Li J, Hu YJ, Wang YT, Yu H. Brij-functionalized chitosan nanocarrier system enhances the intestinal permeability of P-glycoprotein substrate-like drugs. Carbohydr Polym 2021; 266:118112. [PMID: 34044929 DOI: 10.1016/j.carbpol.2021.118112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022]
Abstract
The highly expressed P-glycoprotein (Pgp) in the intestine plays a key role in preventing drugs across the intestinal epithelium, which linked by tight junctions (TJs). Thus increasing the oral bioavailability of Pgp substrate-like drugs (PSLDs) remains a great challenge. Herein, we construct a nanocarrier system derived from Brij-grafted-chitosan (BC) to enhance the oral bioavailability and therapeutic effect of berberine (BBR, a typical PLSD) against diabetic kidney disease. The developed BC nanoparticles (BC-NPs) are demonstrated to improve the intestinal permeability of BBR via transiently and reversibly modulating the intercellular TJs (paracellular pathway) and Pgp-mediated drug efflux (transcellular pathway). As compared to free BBR and chitosan nanoparticles, the BC-NPs enhanced the relative oral bioavailability of BBR in rats (4.4- and 2.7-fold, respectively), and the therapeutic potency of BBR in renal function and histopathology. In summary, such strategy may provide an effective nanocarrier system for oral delivery of BBR and PSLDs.
Collapse
Affiliation(s)
- Wei Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Shi Hang Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Qi Ling Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Ke Gang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Guan Ding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - John M T Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Gordon T C Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Juan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan Jia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Yi Tao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao; HKBU Shenzhen Research Center, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Al-Heibshy FN, Başaran E, Arslan R, Öztürk N, Erol K, Demirel M. Physicochemical characterization and pharmacokinetic evaluation of rosuvastatin calcium incorporated solid lipid nanoparticles. Int J Pharm 2020; 578:119106. [DOI: 10.1016/j.ijpharm.2020.119106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/17/2023]
|
5
|
Asim MH, Nazir I, Jalil A, Laffleur F, Matuszczak B, Bernkop-Schnürch A. Per-6-Thiolated Cyclodextrins: A Novel Type of Permeation Enhancing Excipients for BCS Class IV Drugs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7942-7950. [PMID: 31985207 PMCID: PMC7205388 DOI: 10.1021/acsami.9b21335] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The purpose of the study was to develop a per-6-thiolated α-cyclodextrin (α-CD) by substituting all primary hydroxyl groups of α-CD with thiol groups and to assess its solubility-improving and permeation-enhancing properties for a BCS Class IV drug in vitro as well as in vivo. The primary hydroxyl groups of α-CD were replaced by iodine, followed by substitution with -SH groups. The structure of per-6-thiolated α-CD was approved by FT-IR and 1H NMR spectroscopy. The per-6-thiolated was characterized for thiol content, -SH stability, cytotoxicity, and solubility-improving properties by using the model BCS Class IV drug furosemide (FUR). The mucoadhesive properties of the thiolated oligomer were investigated via viscoelastic measurements with porcine mucus, whereas permeation-enhancing features were evaluated on the Caco-2 cell monolayer and rat gut mucosa. Furthermore, oral bioavailability studies were performed in rats. The per-6-thiolated α-CD oligomer displayed 4244 ± 402 μmol/g thiol groups. These -SH groups were stable at pH ≤ 4, exhibiting a pKa value of 8.1, but subject to oxidation at higher pH. Per-6-thiolated α-CD was not cytotoxic to Caco-2 cells in 0.5% (m/v) concentration within 24 h. It improved the solubility of FUR in the same manner as unmodified α-CD. The addition of per-6-thiolated α-CD (0.5% m/v) increased the mucus viscosity up to 5.8-fold at 37 °C within 4 h. Because of the incorporation in per-6-thiolated α-CD, the apparent permeability coefficient (Papp) of FUR was 6.87-fold improved on the Caco-2 cell monolayer and 6.55-fold on the intestinal mucosa. Moreover, in vivo studies showed a 4.9-fold improved oral bioavailability of FUR due to the incorporation in per-6-thiolated α-CD. These results indicate that per-6-thiolated α-CD would be a promising auxiliary agent for the mucosal delivery of, in particular, BCS Class IV drugs.
Collapse
Affiliation(s)
- Mulazim Hussain Asim
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- College of Pharmacy, University of Sargodha, 40100 Sargodha, Punjab, Pakistan
| | - Imran Nazir
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Jalil
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- CCB, Department of Pharmaceutical Chemistry,
Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.132, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- E-mail: . Phone: +43 512 507 58601. Fax: +43 512 507 58699
| |
Collapse
|
6
|
Al-Heibshy FNS, Başaran E, Arslan R, Öztürk N, Vural İ, Demirel M. Preparation, characterization and pharmacokinetic evaluation of rosuvastatin calcium incorporated cyclodextrin-polyanhydride nanoparticles. Drug Dev Ind Pharm 2019; 45:1635-1645. [DOI: 10.1080/03639045.2019.1648501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fawaz N. S. Al-Heibshy
- Doctorate Program in Pharmaceutical Technology, Graduate School of Health Sciences, Anadolu University, Eskişehir, Turkey
| | - Ebru Başaran
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Anadolu University, Eskişehir, Turkey
| | - Rana Arslan
- Faculty of Pharmacy, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Naile Öztürk
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - İmran Vural
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Müzeyyen Demirel
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
7
|
Petersen ALDOA, Campos TA, Dantas DADS, Rebouças JDS, da Silva JC, de Menezes JPB, Formiga FR, de Melo JV, Machado G, Veras PST. Encapsulation of the HSP-90 Chaperone Inhibitor 17-AAG in Stable Liposome Allow Increasing the Therapeutic Index as Assessed, in vitro, on Leishmania (L) amazonensis Amastigotes-Hosted in Mouse CBA Macrophages. Front Cell Infect Microbiol 2018; 8:303. [PMID: 30214897 PMCID: PMC6126448 DOI: 10.3389/fcimb.2018.00303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
The current long-term treatment for leishmaniasis causes severe side effects and resistance in some cases. An evaluation of the anti-leishmanial potential of an HSP90-inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), demonstrated its potent effect against Leishmania spp. in vitro and in vivo. We have previously shown that 17-AAG can kill L. (L) amazonensis promastigotes with an IC50 of 65 nM and intracellular amastigote at concentrations as low as 125 nM. As this compound presents low solubility and high toxicity in human clinical trials, we prepared an inclusion complex containing hydroxypropyl-β-cyclodextrin and 17-AAG (17-AAG:HPβCD) to improve its solubility. This complex was characterized by scanning electron microscopy, and X-ray diffraction. Liposomes-containing 17-AAG:HPβCD was prepared and evaluated for encapsulation efficiency (EE%), particle size, polydispersity index (PDI), pH, and zeta potential, before and after accelerated and long-term stability testing. An evaluation of leishmanicidal activity against promastigotes and intracellular amastigotes of L. (L) amazonensis was also performed. The characterization techniques utilized confirmed the formation of the inclusion complex, HPβCD:17-AAG, with a resulting 33-fold-enhancement in compound water solubility. Stability studies revealed that 17-AAG:HPβCD-loaded liposomes were smaller than 200 nm, with 99% EE. Stability testing detected no alterations in PDI that was 0.295, pH 7.63, and zeta potential +22.6, suggesting liposome stability, and suitability for evaluating leishmanicidal activity. Treatment of infected macrophages with 0.006 nM of 17-AAG:HPβCD or 17-AAG:HPβCD-loaded liposomes resulted in almost complete amastigote clearance inside macrophages after 48 h. This reduction is similar to the one observed in infected macrophages treated with 2 μM amphotericin B. Our results showed that nanotechnology and drug delivery systems could be used to increase the antileishmanial efficacy and potency of 17-AAG in vitro, while also resulting in reduced toxicity that indicates these formulations may represent a potential therapeutic strategy against leishmaniasis.
Collapse
Affiliation(s)
| | - Thiers A Campos
- Graduate Program in Biological Sciences, Center of Biological Sciences, Federal University of Pernambuco, Recife, Brazil.,Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | | | - Juliana de Souza Rebouças
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil.,Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil
| | - Juliana Cruz da Silva
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Juliana P B de Menezes
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil
| | - Fábio R Formiga
- Postgraduate Program in Applied Cellular and Molecular Biology, Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil.,Laboratory of Vector-Borne Infectious Diseases (LEITV), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil
| | - Janaina V de Melo
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Giovanna Machado
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Patrícia S T Veras
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil.,National Institute of Technology in Tropical Diseases-National Council for Scientific and Technological Development, Brasilia, Brazil
| |
Collapse
|
8
|
Asim MH, Moghadam A, Ijaz M, Mahmood A, Götz RX, Matuszczak B, Bernkop-Schnürch A. S-protected thiolated cyclodextrins as mucoadhesive oligomers for drug delivery. J Colloid Interface Sci 2018; 531:261-268. [PMID: 30036850 DOI: 10.1016/j.jcis.2018.07.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022]
Abstract
AIM The purpose of this study was to develop a novel mucoadhesive thiolated and S-protected gamma cyclodextrin (γ-CD) with an intact ring backbone to assure a prolonged residence time at specific target sites. METHOD Thiolated γ-CD was generated through bromine substitution of its hydroxyl groups followed by replacement to thiol groups using thiourea. In the second step, thiol groups were protected by disulfide bond formation with 2-mercaptonicotinic acid (2-MNA). RESULT Thiolated γ-CD displayed 1385 ± 84 µmol thiol groups per gram of oligomer and the amount of MNA determined in the S-protected oligomer was 1153 ± 41 µmol per gram of oligomer. In-vitro screening of mucoadhesive properties of thiolated and S-protected γ-CD was done by two methods. Rheological investigation revealed the conjugates non-mucolytic with only a slight increase in viscosity of thiolated and S-protected γ-CD as compared to unmodified γ-CD, whereas mucoadhesive properties of the new thiolated and S-protected γ-CD performed on freshly excised porcine intestinal mucosa showed 44.4- and 50.9-fold improvement in mucoadhesion, respectively. The new conjugates did not show any cytotoxicity to Caco-2 cells even at a concentration of 1% (m/v) for 24 h. In addition, in-vitro studies of α-amylase degradation of γ-CD, γ-CD-SH and γ-CD-SS-MNA confirmed that all conjugates are biodegradable. CONCLUSION These outcomes predict that these new conjugates of γ-CD might provide a new favorable tool for drug delivery providing a prolonged residence time on mucosal surfaces.
Collapse
Affiliation(s)
- Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Ali Moghadam
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, 54000 Lahore, Pakistan
| | - Arshad Mahmood
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Roman Xaver Götz
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Borges SC, Ferreira PEB, da Silva LM, de Paula Werner MF, Irache JM, Cavalcanti OA, Buttow NC. Evaluation of the treatment with resveratrol-loaded nanoparticles in intestinal injury model caused by ischemia and reperfusion. Toxicology 2018; 396-397:13-22. [PMID: 29427784 DOI: 10.1016/j.tox.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 01/07/2023]
Abstract
The gastrointestinal tract is extremely sensitive to ischemia and reperfusion (I/R). Studies have reported that resveratrol (RSV) is able to combat damage caused by intestinal I/R. Because of its effectiveness in increasing the permanence and bioavailability of resveratrol in the intestinal epithelium, we investigated whether the effect of resveratrol-loaded in poly(anhydride) nanoparticles reduce oxidative stress and promote myenteric neuroprotection in the ileum of rats subjected to I/R. Physicochemical evaluations were performed on nanoparticles. The animals were divided into nine groups (n = 6/group) and treated every 48 h. Treatments with resveratrol (7 mg/kg of body weight) were applied 5 days before surgery and continued for 7 days after surgery (reperfusion period). The superior mesenteric artery was occluded to cause I/R injury. Oxidative stress, myeloperoxidase, nitrite, aspartate aminotransferase, alanine aminotransferase, immunolabeling of myenteric neurons and glial cells, and gastrointestinal transit was evaluated. Both nanoparticle formulations presented negative charge with homogeneous distribution, and the payload, showed an encapsulation efficiency of 60%. Resveratrol administered in free form prevented alterations that were caused by I/R. The results of the groups treated with RSV-loaded nanoparticles presented similar results to the group treated with free resveratrol. Treatment with empty nanoparticles showed that poly(anhydride) is not an ideal nanocarrier for application in in vivo models of intestinal I/R injury, because of hepatotoxicity that may be caused by epithelial barrier dysfunction that triggers the translocation of nanoparticles.
Collapse
Affiliation(s)
- Stephanie Carvalho Borges
- Department of Morphological Sciences, State University of Maringá, Colombo Avenue, 5790, CEP: 87020-900, Maringá, Paraná, Brazil
| | - Paulo Emílio Botura Ferreira
- Campus Uruguaiana, Federal University of Pampa, BR 472 - Km 592, CEP: 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University Vale of Itajaí, Uruguai Street, 458, CEP: 88302-901, Itajaí, Santa Catarina, Brazil
| | - Maria Fernanda de Paula Werner
- Department of Pharmacology, Federal University of Paraná, XV de Novembro Street, 1299, CEP 80.060-000, Curitiba, Paraná, Brazil
| | - Juan Manuel Irache
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, E-31008, Pamplona, Spain
| | - Osvaldo Albuquerque Cavalcanti
- Department of Pharmacology and Therapeutics, State University of Maringá, Colombo Avenue, 5790, CEP: 87020-900, Maringá, Paraná, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Sciences, State University of Maringá, Colombo Avenue, 5790, CEP: 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
10
|
Larrañeta E, Barturen L, Ervine M, Donnelly RF. Hydrogels based on poly(methyl vinyl ether-co-maleic acid) and Tween 85 for sustained delivery of hydrophobic drugs. Int J Pharm 2018; 538:147-158. [PMID: 29353081 DOI: 10.1016/j.ijpharm.2018.01.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 11/27/2022]
Abstract
Hydrogels based on poly(methyl vinyl ether-co-maleic acid) and Tween 85 were prepared for hydrophobic drug delivery. The hydrogels were synthesized following a simple procedure carried out in solid state. The process did not require the use of any solvent and, as it is based on an esterification reaction, no toxic by-products were obtained. The resulting hydrogels contained Tween 85 inside the structure and due to the amphiphilic nature of this compound, hydrophobic domains within the hydrogel structure were formed. The obtained hydrogels showed good swelling capacities ranging from 100% to 600%. The esterification reaction that took place between poly(methyl vinyl ether-co-maleic acid) and Tween 85 was confirmed by infrared spectroscopy. Hydrogels were loaded with a hydrophobic drug model, Curcumin (CUR), showing that the hydrogels were able to retain up to 36 mg of CUR per g of hydrogel. Additionally, the synthesized hydrogels provided in vitro sustained CUR release over periods of up to 30 days. Finally, and due to the mucoadhesive nature of the prepared materials, one of the hydrogels was tested in vitro as an oral drug delivery system. For this purpose, the selected material was milled into microparticles (45-90 µm diameter). The release of CUR from the microparticles was evaluated under simulated gastric and intestinal conditions. The microparticles were able to release their cargos in 7 h. However, further work is required to optimize this system for oral drug delivery applications.
Collapse
Affiliation(s)
- Eneko Larrañeta
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Laura Barturen
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Michael Ervine
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
11
|
Calleja P, Irache J, Zandueta C, Martínez-Oharriz C, Espuelas S. A combination of nanosystems for the delivery of cancer chemoimmunotherapeutic combinations: 1-Methyltryptophan nanocrystals and paclitaxel nanoparticles. Pharmacol Res 2017; 126:77-83. [DOI: 10.1016/j.phrs.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
|
12
|
Iglesias T, Dusinska M, El Yamani N, Irache JM, Azqueta A, López de Cerain A. In vitro evaluation of the genotoxicity of poly(anhydride) nanoparticles designed for oral drug delivery. Int J Pharm 2017; 523:418-426. [PMID: 28286081 DOI: 10.1016/j.ijpharm.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
In the last years, the development of nanomaterials has significantly increased due to the immense variety of potential applications in technological sectors, such as medicine, pharmacy and food safety. Focusing on the nanodevices for oral drug delivery, poly(anhydride) nanoparticles have received extensive attention due to their unique properties, such as their capability to develop intense adhesive interactions within the gut mucosa, their modifiable surface and their biodegradable and easy-to-produce profile. However, current knowledge of the possible adverse health effects as well as, toxicological information, is still exceedingly limited. Thus, we investigated the capacity of two poly(anhydride) nanoparticles, Gantrez® AN 119-NP (GN-NP) and Gantrez® AN 119 covered with mannosamine (GN-MA-NP), and their main bulk material (Gantrez® AN 119-Polymer), to induce DNA damage and thymidine kinase (TK+/-) mutations in L5178Y TK+/- mouse lymphoma cells after 24h of exposure. The results showed that GN-NP, GN-MA-NP and their polymer did not induce DNA strand breaks or oxidative damage at concentrations ranging from 7.4 to 600μg/mL. Besides, the mutagenic potential of these nanoparticles and their polymer revealed no significant or biologically relevant gene mutation induction at concentrations up to 600μg/mL under our experimental settings. Considering the non-genotoxic effects of GN-NP and GN-MA-NP, as well as their exceptional properties, these nanoparticles are promising nanocarriers for oral medical administrations.
Collapse
Affiliation(s)
- T Iglesias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - M Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, Kjeller, Norway
| | - N El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, Kjeller, Norway
| | - J M Irache
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - A Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain.
| | - A López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain
| |
Collapse
|
13
|
Duchêne D, Bochot A. Thirty years with cyclodextrins. Int J Pharm 2016; 514:58-72. [DOI: 10.1016/j.ijpharm.2016.07.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/05/2023]
|
14
|
Abstract
This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN.
Collapse
|
15
|
Müller G. Personalized Diagnosis and Therapy. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016:3167-3284. [DOI: 10.1007/978-3-319-05392-9_152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Li J, Liu Y, Cha R, Ran B, Mou K, Wang H, Xie Q, Sun J, Jiang X. The biocompatibility evaluation of iron oxide nanoparticles synthesized by a one pot process for intravenous iron supply. RSC Adv 2016. [DOI: 10.1039/c5ra25729h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This paper reports a new synthesis method to control the size of iron oxide nanoparticles (IONs) by adding sodium citrate during fabrication to obtain sodium citrate-modified iron oxide nanoparticles (SCIONs).
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- Beijing 100190
- China
- School of Chemical Engineering and Material Science
| | - Yang Liu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- Beijing 100190
- China
- School of Chemical Engineering and Material Science
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- Beijing 100190
- China
| | - Bei Ran
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- Beijing 100190
- China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy
| | - Kaiwen Mou
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- Beijing 100190
- China
- College of Material Science and Engineering
| | - Huashan Wang
- School of Chemical Engineering and Material Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Qian Xie
- Division of Nephrology
- Peking University Third Hospital
- Beijing 100191
- China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- Beijing 100190
- China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- Beijing 100190
- China
| |
Collapse
|
17
|
Calleja P, Espuelas S, Vauthier C, Ponchel G, Irache JM. Controlled Release, Intestinal Transport, and Oral Bioavailablity of Paclitaxel Can be Considerably Increased Using Suitably Tailored Pegylated Poly(Anhydride) Nanoparticles. J Pharm Sci 2015; 104:2877-86. [DOI: 10.1002/jps.24354] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 02/04/2023]
|
18
|
des Rieux A, Pourcelle V, Cani PD, Marchand-Brynaert J, Préat V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev 2013; 65:833-44. [PMID: 23454185 DOI: 10.1016/j.addr.2013.01.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/12/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
Abstract
Orally administered targeted nanoparticles have a large number of potential biomedical applications and display several putative advantages for oral drug delivery, such as the protection of fragile drugs or modification of drug pharmacokinetics. These advantages notwithstanding, oral drug delivery by nanoparticles remains challenging. The optimization of particle size and surface properties and targeting by ligand grafting have been shown to enhance nanoparticle transport across the intestinal epithelium. Here, different grafting strategies for non-peptidic ligands, e.g., peptidomimetics, lectin mimetics, sugars and vitamins, that are stable in the gastrointestinal tract are discussed. We demonstrate that the grafting of these non-peptidic ligands allows nanoparticles to be targeted to M cells, enterocytes, immune cells or L cells. We show that these grafted nanoparticles could be promising vehicles for oral vaccination by targeting M cells or for the delivery of therapeutic proteins. We suggest that targeting L cells could be useful for the treatment of type 2 diabetes or obesity.
Collapse
|
19
|
Oral drug delivery research in Europe. J Control Release 2012; 161:247-53. [DOI: 10.1016/j.jconrel.2012.01.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 01/06/2023]
|
20
|
|
21
|
Kanwar JR, Kanwar RK, Mahidhara G, Cheung CHA. Cancer Targeted Nanoparticles Specifically Induce Apoptosis in Cancer Cells and Spare Normal Cells. Aust J Chem 2012. [DOI: 10.1071/ch11372] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Curing cancer is the greatest challenge for modern medicine and finding ways to minimize the adverse effects caused by chemotherapeutic agents is of importance in improving patient’s physical conditions. Traditionally, chemotherapy can induce various adverse effects, and these effects are mostly caused by the non-target specific properties of the chemotherapeutic compounds. Recently, the use of nanoparticles has been found to be capable of minimizing these drug-induced adverse effects in animals and in patients during cancer treatment. The use of nanoparticles allows various chemotherapeutic drugs to be targeted to cancer cells with lower dosages. In addition to this, the use of nanoparticles also allows various drugs to be administered to the subjects by an oral route. Here, locked nucleic acid (LNA)-modified epithelial cell adhesion molecules (EpCAM), aptamers (RNA nucleotide), and nucleolin (DNA nucleotide) aptamers have been developed and conjugated on anti-cancer drug-loaded nanocarriers for specific delivery to cancer cells and spare normal cells. Significant amounts of the drug loaded nanocarriers (92 ± 6 %) were found to distribute to the cancer cells at the tumour site and more interestingly, normal cells were unaffected in vitro and in vivo. In this review, the benefits of using nanoparticle-coated drugs in various cancer treatments are discussed. Various nanoparticles that have been tried in improving the target specificity and potency of chemotherapeutic compounds are also described.
Collapse
|
22
|
Fei X, Xu W, Yue Y, Lee MK. Preparation and Characterization of Tributyrin Sub-micron Emulsion as Carrier for Paclitaxel. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2011. [DOI: 10.4333/kps.2011.41.5.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|