1
|
Zhu W, Zhou Y, Guo L, Feng S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov 2024; 10:415. [PMID: 39349440 PMCID: PMC11442784 DOI: 10.1038/s41420-024-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Sialic acids are predominantly found at the terminal ends of glycoproteins and glycolipids and play key roles in cellular communication and function. The process of sialylation, a form of post-translational modification, involves the covalent attachment of sialic acid to the terminal residues of oligosaccharides and glycoproteins. This modification not only provides a layer of electrostatic repulsion to cells but also serves as a receptor for various biological signaling pathways. Sialylation is involved in several pathophysiological processes. Given its multifaceted involvement in cellular functions, sialylation presents a promising avenue for therapeutic intervention. Current studies are exploring agents that target sialic acid residues on sialoglycans or the sialylation process. These efforts are particularly focused on the fields of cancer therapy, stroke treatment, antiviral strategies, and therapies for central nervous system disorders. In this review, we aimed to summarize the biological functions of sialic acid and the process of sialylation, explore their roles in various pathophysiological contexts, and discuss their potential applications in the development of novel therapeutics.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Shenghui Feng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
3
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Liu S, He Y, Feng M, Huang Y, Wu W, Wang J. Targeted Delivery of Arctigenin Using Sialic Acid Conjugate-Modified Liposomes for the Treatment of Breast Cancer. Molecules 2024; 29:278. [PMID: 38202860 PMCID: PMC10781120 DOI: 10.3390/molecules29010278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Arctigenin (ATG) is a broad-spectrum antitumor drug with an excellent inhibitory effect on malignant tumors such as breast cancer, glioblastoma, liver cancer, and colon cancer. However, the clinical application of ATG is limited by its poor water solubility and quick hydrolysis in the liver, intestine, and plasma, which might hinder its application. Sialic acid (SA) recognizes selectin receptors overexpressed on the surface of tumor-associated macrophages. In this study, SA was conjugated with octadecylamine (ODA) to prepare SA-ODA, which was employed to prepare SA functionalized nanoliposomes (SA-Lip) to achieve breast cancer targeting. The formulations were finely optimized using the Box-Behnken design to achieve higher ATG loading. The size, ζ potential, entrapment efficiency, drug loading, and release behavior of ATG@SA-Lip were fully investigated in comparison with conventional ATG@Lip. The ATG@SA-Lip displayed more potent cytotoxicity and higher cellular internalization compared to ATG@Sol and ATG@Lip in both MCF7 and 4T1 cells. Notably, ATG@SA-Lip showed the lowest impact on the immune system. Our study demonstrates that SA-Lip has strong potential as a delivery system for the targeted delivery of ATG.
Collapse
Affiliation(s)
- Shunfang Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.L.); (Y.H.); (M.F.); (Y.H.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yaozhen He
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.L.); (Y.H.); (M.F.); (Y.H.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minding Feng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.L.); (Y.H.); (M.F.); (Y.H.)
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongtong Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.L.); (Y.H.); (M.F.); (Y.H.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenhao Wu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.L.); (Y.H.); (M.F.); (Y.H.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiu Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.L.); (Y.H.); (M.F.); (Y.H.)
- Guangdong High Education Institutes Engineering Research Center of Modified-Released Pharmaceutical Products, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
5
|
Peng Y, Ma L, Xu P, Tao F. High-Performance Production of N-Acetyl-d-Neuraminic Acid with Whole Cells of Fast-Growing Vibrio natriegens via a Thermal Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20198-20209. [PMID: 38051209 DOI: 10.1021/acs.jafc.3c07259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
High performance is the core objective that biotechnologists pursue, of which low efficiency, low titer, and side products are the chief obstacles. Here, a thermal strategy is proposed for simultaneously addressing the obstacles of whole-cell catalysis that is widely applied in the food industry. The strategy, by combining fast-growing Vibrio natriegens, thermophilic enzymes, and high-temperature whole-cell catalysis, was successfully applied for the high-performance production of N-acetyl-d-neuraminic acid (Neu5Ac) that plays essential roles in the fields of food (infant formulas), healthcare, and medicine. By using this strategy, we realized the highest Neu5Ac titer and productivity of 126.1 g/L and up to 71.6 g/(L h), respectively, 7.2-fold higher than the productivity of Escherichia coli. The major byproduct acetic acid was also eliminated via quenching complex metabolic side reactions enabled by temperature elevation. This study offers a broadly applicable strategy for producing chemicals relevant to the food industry, providing insights for its future development.
Collapse
Affiliation(s)
- Yuan Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lina Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
6
|
Liu G, Hao M, Zeng B, Liu M, Wang J, Sun S, Liu C, Huilian C. Sialic acid and food allergies: The link between nutrition and immunology. Crit Rev Food Sci Nutr 2022; 64:3880-3906. [PMID: 36369942 DOI: 10.1080/10408398.2022.2136620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food allergies (FA), a major public health problem recognized by the World Health Organization, affect an estimated 3%-10% of adults and 8% of children worldwide. However, effective treatments for FA are still lacking. Recent advances in glycoimmunology have demonstrated the great potential of sialic acids (SAs) in the treatment of FA. SAs are a group of nine-carbon α-ketoacids usually linked to glycoproteins and glycolipids as terminal glycans. They play an essential role in modulating immune responses and may be an effective target for FA intervention. As exogenous food components, sialylated polysaccharides have anti-FA effects. In contrast, as endogenous components, SAs on immunoglobulin E and immune cell surfaces contribute to the pathogenesis of FA. Given the lack of comprehensive information on the effects of SAs on FA, we reviewed the roles of endogenous and exogenous SAs in the pathogenesis and treatment of FA. In addition, we considered the structure-function relationship of SAs to provide a theoretical basis for the development of SA-based FA treatments.
Collapse
Affiliation(s)
- Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binghui Zeng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, California, United States of America
| | - Che Huilian
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Hwang J, Kim YR, Park JY, Nam WH, Kim J, Cho J, Kim Y. Selective Anticancer Materials by Self-Assembly of Synthetic Amphiphiles Based on N-Acetylneuraminic Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16100-16107. [PMID: 35377593 DOI: 10.1021/acsami.2c02922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
N-Acetylneuraminic acid (Neu5Ac), one of the abundant types of sialic acid, is an emerging anticancer agent owing to its ability to target selectins in the plasma membrane of cancer cells. Considering the functionality of Neu5Ac, obtaining novel Neu5Ac-conjugated materials with a selective and an enhanced antitumor activity has remained a challenge. Herein, we report the supramolecular materials of three novel amphiphiles composed of Neu5Ac as a hydrophilic segment and pyrene or adamantane as a hydrophobic segment. The synthetic amphiphiles 1, 2, and 3 self-assembled into ribbons, vesicles, and irregular aggregates in an aqueous solution, respectively. Among the materials, vesicles of amphiphile 2 showed the most substantial selectivity toward cancer cells, followed by cell death due to the production of reactive oxygen species by the pyrene group. The dual advantage of Neu5Ac-selectivity and the pyrene-cytotoxicity of vesicles of amphiphile 2 can provide a strategy for effective anticancer materials.
Collapse
Affiliation(s)
- Jiwon Hwang
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ye Rim Kim
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woo Hyun Nam
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory, Postech, Gyeongbuk 790-784, Republic of Korea
| | - Jinhan Cho
- KU-KIST Graduate School of Converging Science and Technology, Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841 Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Sun J, Tian Q, Liu M, Su Y, Liu X, Deng Y, Song Y. Evaluation of the Antitumor Effect and Immune Response of Micelles Modified with a Polysialic Acid-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate Conjugate. AAPS PharmSciTech 2021; 22:223. [PMID: 34409520 DOI: 10.1208/s12249-021-02047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) has shown potential applications in cancer therapy owing to its attractive properties, including reversal of multi-drug resistance and synergistic effects with antitumor drugs. However, its associated shortcomings cannot be underestimated, including activation of the body's immune response and acceleration of blood clearance of polyethylene glycolylated preparations. Polysialic acid (PSA) is a polysaccharide homopolymer, with the dual function of immune camouflage and tumor targeting. PSA and TPGS conjugates (PSA-TPGS) were synthesized to weaken the immune risks of TPGS. We developed PSA-TPGS and TPGS self-assembled mixed micelles and encapsulated the classical antineoplastic, docetaxel. The particle size of docetaxel-loaded mixed micelles was 16.3 ± 2.0 nm, with entrapment efficiency of 99.0 ± 0.9% and drug-loading efficiency of 3.20 ± 0.03%. Antitumor activity studies revealed that the mixed micelles showed better tumor inhibition than Tween 80 and TPGS micelles. Detection of the accelerated blood clearance (ABC) phenomenon demonstrated that insertion of PSA-TPGS into the micelles weakened the ABC phenomenon induced by TPGS. In summary, PSA-TPGS could be a potential nanocarrier to improve antitumor activity and weaken immune responses.
Collapse
|
9
|
Almeida‐Marrero V, Mascaraque M, Jesús Vicente‐Arana M, Juarranz Á, Torres T, de la Escosura A. Tuning the Nanoaggregates of Sialylated Biohybrid Photosensitizers for Intracellular Activation of the Photodynamic Response. Chemistry 2021; 27:9634-9642. [PMID: 33834569 PMCID: PMC8360122 DOI: 10.1002/chem.202100681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 01/18/2023]
Abstract
In the endeavor of extending the clinical use of photodynamic therapy (PDT) for the treatment of superficial cancers and other neoplastic diseases, deeper knowledge and control of the subcellular processes that determine the response of photosensitizers (PS) are needed. Recent strategies in this direction involve the use of activatable and nanostructured PS. Here, both capacities have been tuned in two dendritic zinc(II) phthalocyanine (ZnPc) derivatives, either asymmetrically or symmetrically substituted with 3 and 12 copies of the carbohydrate sialic acid (SA), respectively. Interestingly, the amphiphilic ZnPc-SA biohybrid (1) self-assembles into well-defined nanoaggregates in aqueous solution, facilitating cellular internalization and transport whereas the PS remains inactive. Within the cells, these nanostructured hybrids localize in the lysosomes, as usually happens for anionic and hydrophilic aggregated PS. Yet, in contrast to most of them (e. g., compound 2), hybrid 1 recovers the capacity for photoinduced ROS generation within the target organelles due to its amphiphilic character; this allows disruption of aggregation when the compound is inserted into the lysosomal membrane, with the concomitant highly efficient PDT response.
Collapse
Affiliation(s)
- Verónica Almeida‐Marrero
- Department of Organic Chemistry / SIdI (MJVA)Universidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
| | - Marta Mascaraque
- Departamento de BiologíaUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS)28034MadridSpain
| | - María Jesús Vicente‐Arana
- Department of Organic Chemistry / SIdI (MJVA)Universidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
| | - Ángeles Juarranz
- Departamento de BiologíaUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS)28034MadridSpain
| | - Tomás Torres
- Department of Organic Chemistry / SIdI (MJVA)Universidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Campus de Cantoblanco28049MadridSpain
- IMDEA NanoscienceCampus de Cantoblanco28049MadridSpain
| | - Andrés de la Escosura
- Department of Organic Chemistry / SIdI (MJVA)Universidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
10
|
Pleass RJ. The therapeutic potential of sialylated Fc domains of human IgG. MAbs 2021; 13:1953220. [PMID: 34288809 PMCID: PMC8296966 DOI: 10.1080/19420862.2021.1953220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogens frequently use multivalent binding to sialic acid to infect cells or to modulate immunity through interactions with human sialic acid-binding immunoglobulin-type lectins (Siglecs). Molecules that interfere with these interactions could be of interest as diagnostics, anti-infectives or as immune modulators. This review describes the development of molecular scaffolds based on the crystallizable fragment (Fc) region of immunoglobulin (Ig) G that deliver high-avidity binding to innate immune receptors, including sialic acid-dependent receptors. The ways in which the sialylated Fc may be engineered as immune modulators that mimic the anti-inflammatory properties of intravenous polyclonal Ig or as blockers of sialic-acid-dependent infectivity by viruses are also discussed.
Collapse
Affiliation(s)
- Richard J. Pleass
- Department of Tropical Disease Biology, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
11
|
Yang H, Lu L, Chen X. An overview and future prospects of sialic acids. Biotechnol Adv 2020; 46:107678. [PMID: 33285252 DOI: 10.1016/j.biotechadv.2020.107678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Sialic acids (Sias) are negatively charged functional monosaccharides present in a wide variety of natural sources (plants, animals and microorganisms). Sias play an important role in many life processes, which are widely applied in the medical and food industries as intestinal antibacterials, antivirals, anti-oxidative agents, food ingredients, and detoxification agents. Most Sias are composed of N-acetylneuraminic acid (Neu5Ac, >99%), and Sia is its most commonly used name. In this article, we review Sias in terms of their structures, applications, determination methods, metabolism, and production strategies. In particular, we summarise and compare different production strategies, including extraction from natural sources, chemical synthesis, polymer decomposition, enzymatic synthesis, whole-cell catalysis, and de novo biosynthesis via microorganism fermentation. We also discuss research on their physiological functions and applications, barriers to efficient production, and strategies for overcoming these challenges. We focus on efficient de novo biosynthesis strategies for Neu5Ac via microbial fermentation using novel synthetic biology tools and methods that may be applied in future. This work provides a comprehensive overview of recent advances on Sias, and addresses future challenges regarding their functions, applications, and production.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liping Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; College of life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Leonhard V, Alasino RV, Pasqualini ME, Cremonezzi DC, García NH, Beltramo DM. Monosialoganglioside GM1 reduces toxicity of Ptx and increase anti-metastasic effect in a murine mammary cancer model. Sci Rep 2020; 10:10191. [PMID: 32576898 PMCID: PMC7311431 DOI: 10.1038/s41598-020-67256-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/29/2020] [Indexed: 11/09/2022] Open
Abstract
Having demonstrated the ability of monosialoganglioside GM1 micelles as oncology drug transporter, this work focuses on evaluating its application in an in vivo system, studying the toxicity and antitumoral effect of GM1-Ptx micellar formulation. The maximum tolerated dose (MTD) obtained after intravenous administration of GM1-Ptx in mice was 55 mg/kg and the 50% lethal dose (LD50) was 70 mg/kg. This value is higher than those described for the commercial formulations TAXOL and ABRAXANE, with LD50 of 30 and 45 mg/kg respectively. The antitumor activity, mortality and incidence of metastasis were studied on a murine model of mammary gland cancer. The GM1-Ptx formulation was administered i.v. at different doses for 9 weeks using empty GM1 micelles and saline as treatment controls. Once the treatments were completed, biochemical markers were quantified and histological tissue tests were performed. The most promising results were obtained with the treatment at a dose of 15 mg/kg/twice a week, condition in which a longer survival and significant reduction in the incidence of animals with metastasis, since only one 25% of the mice showed presence of pulmonary micro metastases.
Collapse
Affiliation(s)
- Victoria Leonhard
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Roxana V Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María E Pasqualini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud- FCM (INICSA-CONICET), Córdoba, Argentina
| | - David C Cremonezzi
- Cátedra de Patología - Hospital Nacional de Clínicas - Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Néstor H García
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud- FCM (INICSA-CONICET), Córdoba, Argentina
| | - Dante M Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina. .,Facultad de Ciencias Químicas - Universidad Católica de Córdoba, Córdoba, Argentina.
| |
Collapse
|
13
|
Nanotechnology and sialic acid biology. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153339 DOI: 10.1016/b978-0-12-816126-5.00011-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnol Adv 2019; 37:787-800. [DOI: 10.1016/j.biotechadv.2019.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
|
15
|
Gao X, Zhang F, Wu M, Wu Z, Shang G. Production of N-Acetyl-d-neuraminic Acid by Whole Cells Expressing Bacteroides thetaiotaomicron N-Acetyl-d-glucosamine 2-Epimerase and Escherichia coli N-Acetyl-d-neuraminic Acid Aldolase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6285-6291. [PMID: 31117501 DOI: 10.1021/acs.jafc.9b01839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
N-Acetyl-d-neuraminic acid (Neu5Ac) is a potential baby nutrient and the key precursor of antiflu medicine Zanamivir. The Neu5Ac chemoenzymatic synthesis consists of N-acetyl-d-glucosamine epimerase (AGE)-catalyzed epimerization of N-acetyl-d-glucosamine (GlcNAc) to N-acetyl-d-mannosamine (ManNAc) and aldolase-catalyzed condensation between ManNAc and pyruvate. Herein, we cloned and characterized BT0453, a novel AGE, from a human gut symbiont Bacteroides thetaiotaomicron. BT0453 shows the highest soluble fraction among the AGEs tested. With GlcNAc and sodium pyruvate as substrates, Neu5Ac production by coupling whole cells expressing BT0453 and Escherichia coli N-acetyl-d-neuraminic acid aldolase was explored. After 36 h, a 53.6% molar yield, 3.6 g L-1 h-1 productivity and 42.9 mM titer of Neu5Ac were obtained. Furthermore, for the first time, the T7- BT0453-T7- nanA polycistronic unit was integrated into the E. coli genome, generating a chromosome-based biotransformation system. BT0453 protein engineering and metabolic engineering studies hold potential for the industrial production of Neu5Ac.
Collapse
Affiliation(s)
- Xinyue Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Feifei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Meng Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Zhixin Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
16
|
Zhao L, Tian R, Shen Q, Liu Y, Liu L, Li J, Du G. Pathway Engineering of
Bacillus subtilis
for Enhanced
N
‐Acetylneuraminic Acid Production via Whole‐Cell Biocatalysis. Biotechnol J 2019; 14:e1800682. [DOI: 10.1002/biot.201800682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/15/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Qingyang Shen
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| |
Collapse
|
17
|
Yan Q, Fong SS. Design and modularized optimization of one‐step production of
N‐
acetylneuraminic acid from chitin in
Serratia marcescens. Biotechnol Bioeng 2018; 115:2255-2267. [DOI: 10.1002/bit.26782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Yan
- Department of Chemical and Life Science EngineeringVirginia Commonwealth University Richmond Virginia
| | - Stephen S. Fong
- Department of Chemical and Life Science EngineeringVirginia Commonwealth University Richmond Virginia
- Center for the Study of Biological Complexity, Virginia Commonwealth UniversityRichmond Virginia
| |
Collapse
|
18
|
Peters G, De Paepe B, De Wannemaeker L, Duchi D, Maertens J, Lammertyn J, De Mey M. Development ofN-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gert Peters
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| | | | - Dries Duchi
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| | - Jo Maertens
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| | | | - Marjan De Mey
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| |
Collapse
|
19
|
Pawlish G, Spivack K, Gabriel A, Huang Z, Comolli N. Chemotherapeutic loading via tailoring of drug-carrier interactions in poly (sialic acid) micelles. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Sialic Acid-Targeted Biointerface Materials and Bio-Applications. Polymers (Basel) 2017; 9:polym9070249. [PMID: 30970926 PMCID: PMC6432383 DOI: 10.3390/polym9070249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 02/07/2023] Open
Abstract
Sialic acids (SAs) are typically found as terminal monosaccharides attached to cell surface glycoconjugates, which play crucial roles in various biological processes, and aberrant sialylation is closely associated with many diseases, particularly cancers. As SAs are overexpressed in tumor-associated glycoproteins, the recognition and specific binding of SA are crucial for monitoring, analyzing and controlling cancer cells, which would have a considerable impact on diagnostic and therapeutic application. However, both effective and selective recognition of SA on the cancer cell surface remains challenging. In recent years, SA-targeted biointerface materials have attracted great attention in various bio-applications, including cancer detection and imaging, drug delivery for cancer therapy and sialylated glycopeptide separation or enrichment. This review provides an overview of recent advances in SA-targeted biointerface materials and related bio-applications.
Collapse
|
21
|
Hao Y, Zhang B, Zheng C, Niu M, Guo H, Zhang H, Chang J, Zhang Z, Wang L, Zhang Y. Multifunctional nanoplatform for enhanced photodynamic cancer therapy and magnetic resonance imaging. Colloids Surf B Biointerfaces 2017; 151:384-393. [DOI: 10.1016/j.colsurfb.2016.10.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 01/08/2023]
|
22
|
Hao Y, Zheng C, Wang L, Hu Y, Guo H, Song Q, Zhang H, Zhang Z, Zhang Y. Covalent self-assembled nanoparticles with pH-dependent enhanced tumor retention and drug release for improving tumor therapeutic efficiency. J Mater Chem B 2017; 5:2133-2144. [PMID: 32263686 DOI: 10.1039/c6tb02833k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing a smart drug delivery system with enhanced tumor retention at the tumor site, and rapid intracellular drug release promises to improve the therapeutic index and mitigate side effects. To this end, covalent phenylboronic acid (PBA)-based self-assembly nanoparticles (BNPs) consisting of pH-responsive cores and detachable poloxamer 188 shells were constructed for loading doxorubicin (DOX) in a simple process. The poloxamer 188 coating could be easily detached when the breakage of the borate ester bonds in the external nanocores was initially triggered in the tumor extracellular weak acid environment. The concealed PBA was subsequently exposed and could react with sialic acids (SA), which are overexpressed on tumor cells, and this enhanced the tumor retention effect of the fresh nanoparticle as well as facilitating the cellular uptake after removing the protective layers. Furthermore, owing to the existence of pH-responsive esters, the uptaken fresh nanoparticles could rapidly release DOX in the acidic tumor environment, which resulted in an enhanced therapeutic efficiency in vitro and in vivo. In summary, this pH dependent behaviour of DOX/BNPs provided new insights for enhanced chemotherapeutic treatment in cancer.
Collapse
Affiliation(s)
- Yongwei Hao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim YH, Min KH, Wang Z, Kim J, Jacobson O, Huang P, Zhu G, Liu Y, Yung B, Niu G, Chen X. Development of Sialic Acid-coated Nanoparticles for Targeting Cancer and Efficient Evasion of the Immune System. Theranostics 2017; 7:962-973. [PMID: 28382168 PMCID: PMC5381258 DOI: 10.7150/thno.19061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/14/2017] [Indexed: 01/15/2023] Open
Abstract
Evading the reticuloendothelial system (RES) remains a critical challenge in the development of efficient delivery and diagnostic systems for cancer. Sialic acid (N-acetylneuraminic acid, Neu5Ac) is recognized as a "self" marker by major serum protein complement factor H and shows reduced interaction with the innate immune system via sialic acid-binding immunoglobulin-like lectin (Siglec), which is known as one of the significant regulators of phagocytic evasion. Accordingly, we prepared different surface-modified gold nanoparticles (AuNPs) and investigated the effects of sialic acid on cellular and immune responses of nanoparticles in vitro and in vivo. Sialic acid modification not only facilitates evasion of the RES by suppressing the immune response, but also enhances tumor accumulation via its active targeting ability. Therefore, sialic acid modification presents a promising strategy to advance nanotechnology towards the prospect of clinical translation.
Collapse
|
24
|
Berg TO, Gurung MK, Altermark B, Smalås AO, Ræder ILU. Characterization of the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish pathogen Moritella viscosa. Carbohydr Res 2015; 402:133-45. [DOI: 10.1016/j.carres.2014.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 02/04/2023]
|
25
|
|
26
|
Gurung MK, Ræder ILU, Altermark B, Smalås AO. Characterization of the sialic acid synthase from Aliivibrio salmonicida suggests a novel pathway for bacterial synthesis of 7-O-acetylated sialic acids. Glycobiology 2013; 23:806-19. [PMID: 23481098 DOI: 10.1093/glycob/cwt018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Resolving the enzymatic pathways leading to sialic acids (Sias) in bacteria are vitally important for understanding their roles in pathogenesis and for subsequent development of tools to combat infections. A detailed characterization of the involved enzymes is also essential due to the highly applicable properties of Sias, i.e., as used in a wide range of medical applications and human nutrition. Bacterial strains that produce Sias display them mainly on their cell surface to mimic animal cells thereby evading the host's immune system. Despite several studies, little is known about the virulence mechanisms of the fish pathogen Aliivibrio salmonicida. The genome of A. salmonicida LFI1238 contains a gene cluster homologous to the Escherichia coli neuraminic acid (Neu) gene cluster involved in biosynthesis of Sias found in the E. coli capsule. This cluster is probably responsible for the biosynthesis of Neu found in A. salmonicida. In this work, we have produced and characterized the sialic acid (Sia) synthase NeuB1, the key enzyme in the pathway. The Sia synthase is an enzyme producing N-acetylneuraminic acid by the condensation of N-acetylmannosamine and phosphoenolpyruvate. Genome content, kinetic data obtained, together with structural considerations, have led us to the prediction that the substrate for NeuB1 from A. salmonicida, E. coli and Streptococcus agalactiae among others, is 4-O-acetyl-N-acetylmannosamine. This means that the product of its enzymatic reaction is 7-O-acetyl-N-acetylneuraminic acid. We propose a pathway for production of this Sia in A. salmonicida, and present evidence for the presence of diacetylated Neu in the bacterium.
Collapse
Affiliation(s)
- Man K Gurung
- Department of Chemistry, The Norwegian Structural Biology Center NorStruct, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
27
|
Kang J, Gu P, Wang Y, Li Y, Yang F, Wang Q, Qi Q. Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli. Metab Eng 2012; 14:623-9. [DOI: 10.1016/j.ymben.2012.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/27/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
|