1
|
Li F, Zhang Z, Wang X, Yin X, Fu M, Qin T, Ji X, Yang G, Sun S. A physical crosslinked pH-sensitive hydrogel based on hemicellulose/graphene oxide for controlled oral drug delivery. Int J Biol Macromol 2025; 289:138875. [PMID: 39701251 DOI: 10.1016/j.ijbiomac.2024.138875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The design of innovative pH-sensitive hydrogels for oral drug delivery is particularly promising for the treatment of intestinal diseases. The traditional pH-responsive hydrogels still have some problems such as low biocompatibility, complex preparation process and poor therapeutic effect, so a new method needs to be developed to solve these problems. Here, a pH-sensitive hemicellulose/graphene oxide (HC/GO) composite hydrogel (HGCH) was prepared through a one-step strategy. Benefitting from the multiple hydrogen bonding between HC and GO, HGCH possessed a low gelator concentration (∼0.79 wt%), well-defined 3D porous network and excellent mechanical properties. Remarkably, HGCH exhibited pH-induced gel-sol transition and a high drug loading efficiency, showing great potential as a candidate for advanced drug carrier. The drug loading and release test revealed that about 85 % Vitamin B 12 was released in neutral PBS solution (pH 7.4). However, only about 30 % drug was diffused into acid medium (pH 1.7) in the same period, which suggested the HGCH have high adaptability to soluble drugs and pH sensitivity triggered release. Further cellular toxicity tests demonstrated that the HGCH was nontoxic and biocompatible for cells. Thus, the physically cross-linked HGCH would be an attractive drug carrier for controlled drug release at physiological pH in the future.
Collapse
Affiliation(s)
- Fengfeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Zhili Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China.
| | - Xiluan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xiuxin Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Maoqing Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Tianci Qin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Shaolong Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
2
|
Liu J, Li S, Li S, Tian J, Li H, Pan Z, Lu L, Mao Y. Recent Advances in Natural-Polymer-Based Hydrogels for Body Movement and Biomedical Monitoring. BIOSENSORS 2024; 14:415. [PMID: 39329790 PMCID: PMC11430138 DOI: 10.3390/bios14090415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
In recent years, the interest in medical monitoring for human health has been rapidly increasing due to widespread concern. Hydrogels are widely used in medical monitoring and other fields due to their excellent mechanical properties, electrical conductivity and adhesion. However, some of the non-degradable materials in hydrogels may cause some environmental damage and resource waste. Therefore, organic renewable natural polymers with excellent properties of biocompatibility, biodegradability, low cost and non-toxicity are expected to serve as an alternative to those non-degradable materials, and also provide a broad application prospect for the development of natural-polymer-based hydrogels as flexible electronic devices. This paper reviews the progress of research on many different types of natural-polymer-based hydrogels such as proteins and polysaccharides. The applications of natural-polymer-based hydrogels in body movement detection and biomedical monitoring are then discussed. Finally, the present challenges and future prospects of natural polymer-based hydrogels are summarized.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Saisai Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Shuoze Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Jinyue Tian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Hang Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Wu J, Li H, Zhang N, Zheng Q. Micelle-Containing Hydrogels and Their Applications in Biomedical Research. Gels 2024; 10:471. [PMID: 39057494 PMCID: PMC11276039 DOI: 10.3390/gels10070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are one of the most commonly used materials in our daily lives, which possess crosslinked three-dimensional network structures and are capable of absorbing large amounts of fluid. Due to their outstanding properties, such as flexibility, tunability, and biocompatibility, hydrogels have been widely employed in biomedical research and clinics, especially in on-demand drug release. However, traditional hydrogels face various limitations, e.g., the delivery of hydrophobic drugs due to their highly hydrophilic interior environment. Therefore, micelle-containing hydrogels have been designed and developed, which possess both hydrophilic and hydrophobic microenvironments and enable the storage of diverse cargos. Based on the functionalities of micelles, these hydrogels can be classified into micelle-doped and chemically/physically crosslinked types, which were reported to be responsive to varied stimuli, including temperature, pH, irradiation, electrical signal, magnetic field, etc. Here, we summarize the research advances of micelle-containing hydrogels and provide perspectives on their applications in the biomedical field based on the recent studies from our own lab and others.
Collapse
Affiliation(s)
- Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Liu B, Chen K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024; 10:262. [PMID: 38667681 PMCID: PMC11048949 DOI: 10.3390/gels10040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, with their distinctive three-dimensional networks of hydrophilic polymers, drive innovations across various biomedical applications. The ability of hydrogels to absorb and retain significant volumes of water, coupled with their structural integrity and responsiveness to environmental stimuli, renders them ideal for drug delivery, tissue engineering, and wound healing. This review delves into the classification of hydrogels based on cross-linking methods, providing insights into their synthesis, properties, and applications. We further discuss the recent advancements in hydrogel-based drug delivery systems, including oral, injectable, topical, and ocular approaches, highlighting their significance in enhancing therapeutic outcomes. Additionally, we address the challenges faced in the clinical translation of hydrogels and propose future directions for leveraging their potential in personalized medicine and regenerative healthcare solutions.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kuo Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Huang Q, Chen X, Yu S, Gong G, Shu H. Research progress in brain-targeted nasal drug delivery. Front Aging Neurosci 2024; 15:1341295. [PMID: 38298925 PMCID: PMC10828028 DOI: 10.3389/fnagi.2023.1341295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
The unique anatomical and physiological connections between the nasal cavity and brain provide a pathway for bypassing the blood-brain barrier to allow for direct brain-targeted drug delivery through nasal administration. There are several advantages of nasal administration compared with other routes; for example, the first-pass effect that leads to the metabolism of orally administered drugs can be bypassed, and the poor compliance associated with injections can be minimized. Nasal administration can also help maximize brain-targeted drug delivery, allowing for high pharmacological activity at lower drug dosages, thereby minimizing the likelihood of adverse effects and providing a highly promising drug delivery pathway for the treatment of central nervous system diseases. The aim of this review article was to briefly describe the physiological structures of the nasal cavity and brain, the pathways through which drugs can enter the brain through the nose, the factors affecting brain-targeted nasal drug delivery, methods to improve brain-targeted nasal drug delivery systems through the application of related biomaterials, common experimental methods used in intranasal drug delivery research, and the current limitations of such approaches, providing a solid foundation for further in-depth research on intranasal brain-targeted drug delivery systems (see Graphical Abstract).
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Chen
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Shu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
6
|
Xue X, Wang F, Shi M, Khan FI. Synthesis of Thermo-Responsive Monofunctionalized Diblock Copolymer Worms. Polymers (Basel) 2023; 15:4590. [PMID: 38231987 PMCID: PMC10708438 DOI: 10.3390/polym15234590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) with worm-like morphology is a typical example of reversible addition-fragmentation chain transfer (RAFT) dispersion polymerized thermo-responsive copolymer via polymerization-induced self-assembly (PISA) in aqueous solution. Chain transfer agents (CTAs) are the key component in controlling RAFT, the structures of which determine the end functional groups of the polymer chain. It is therefore of interest to monofunctionalize the polymers via CTA moiety, for bioactive functionality conjugation and in the meantime maintain the precisely controlled morphology of the copolymers and the related property. In this work, a newly designed CTA 5-(2-(tert-butoxycarbonylamino) ethylamino)-2-cyano-5-oxopentan-2-yl benzodithioate (t-Boc CPDB) was synthesized and used for the RAFT polymerization of PGMA45-PHPMA120. Subsequently, PGMA45-PHPMA120 copolymers with primary amine, maleimide, and reduced L-glutathione (a tripeptide) monofunctionalized terminals were synthesized via deprotection and conjugation reactions. These monofunctionalized copolymers maintain worm-like morphology and thermo-responsive property in aqueous solution (10% w/v), as confirmed by the transmission electron microscopy (TEM) images, and the observation of the phase transition behavior in between 4 °C and room temperature (~20 °C), respectively. Summarily, a range of thermo-responsive monofunctionalized PGMA45-PHPMA120 diblock copolymer worms were successfully synthesized, which are expected to offer potential biomedical applications, such as in polymer therapeutics, drug delivery, and diagnostics.
Collapse
Affiliation(s)
- Xuan Xue
- Department of Chemistry, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (F.W.); (M.S.)
| | - Feifei Wang
- Department of Chemistry, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (F.W.); (M.S.)
| | - Minhao Shi
- Department of Chemistry, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (F.W.); (M.S.)
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| |
Collapse
|
7
|
Ahmed YW, Tsai HC, Wu TY, Darge HF, Chen YS. Role of thermal and reactive oxygen species-responsive synthetic hydrogels in localized cancer treatment (bibliometric analysis and review). MATERIALS ADVANCES 2023; 4:6118-6151. [DOI: 10.1039/d3ma00341h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cancer is a major pharmaceutical challenge that necessitates improved care.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, Republic of China
| | - Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Yu-Shuan Chen
- Bio Innovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, Republic of China
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Tzu Chi University of Science and Technology, Taiwan, Republic of China
| |
Collapse
|
8
|
Chen Y, An Q, Teng K, Zhang Y, Zhao Y. Latest development and versatile applications of highly integrating drug delivery patch. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Novel Developments on Stimuli-Responsive Probiotic Encapsulates: From Smart Hydrogels to Nanostructured Platforms. FERMENTATION 2022. [DOI: 10.3390/fermentation8030117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we explored the routes for encapsulates design to enhance their performance in terms of degradation kinetics, adsorption, and mucus and gut microbiome interactions. Finally, we present the clinical perspectives of implementing novel probiotics and the challenges to assure scalability and cost-effectiveness, prerequisites for an eventual niche market penetration.
Collapse
|
10
|
Davari N, Bakhtiary N, Khajehmohammadi M, Sarkari S, Tolabi H, Ghorbani F, Ghalandari B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers (Basel) 2022; 14:986. [PMID: 35267809 PMCID: PMC8914701 DOI: 10.3390/polym14050986] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran;
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115114, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd 8174848351, Iran;
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 158754413, Iran;
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 158754413, Iran
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
11
|
The Potential of a Site-Specific Delivery of Thiamine Hydrochloride as a Novel Insect Repellent Exerting Long-Term Protection on Human Skin: In-vitro, Ex-vivo Study and Clinical Assessment. J Pharm Sci 2021; 110:3659-3669. [PMID: 34358530 DOI: 10.1016/j.xphs.2021.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 11/20/2022]
Abstract
Thiamine hydrochloride (TH) was thought to exert a good insect repellent activity. The purpose of this work was to develop a formulation that releases TH in sustained regimen on human skin. Long lasting protection against mosquito bites was achieved. Pullulan acetate (PA) was used to prepare TH nanospheres. Optimal system was incorporated in Pluronic® hydrogel. Formulae were tested for in-vitro release and ex-vivo permeation. Complete protection time (CPT) was done adopting Kaplan-Meier survival function for the synthetic repellent (DEET), TH solution and nanospheres in hydrogel. Release profile of TH solution, nanospheres and nanosphere-loaded hydrogel (DG) demonstrated an added effect of DG, where t 1/2 was 11.2 ± 1.4 h. SEM for DG showed homogenous dispersion of nanospheres inside the matrix of the gel. Ex-vivo permeation showed only 0.761 ± 0.04% of TH in hydrogel permeated the skin after 12 h, while 44.98 ± 3.2% permeated when TH solution was applied. Clinical study revealed a significant difference in CPT between TH solution with either DEET or (DG) (p<0.05), and no significant difference between DEET and DG with CPT 400 ± 31 and 360 ± 18 min, respectively (P > 0.05). The high efficacy of TH-loaded hydrogel rendered it a successful alternative for DEET, offering long protection against mosquito bites.
Collapse
|
12
|
Xu Y, Yang M, Ma Q, Di X, Wu G. A bio-inspired fluorescent nano-injectable hydrogel as a synergistic drug delivery system. NEW J CHEM 2021; 45:3079-3087. [DOI: 10.1039/d0nj05719c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A nano-injectable hydrogel with fluorescence properties and controlled sequential release of dual drugs.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Mingming Yang
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Qiyue Ma
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiang Di
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
13
|
Nose-to-brain delivery of drug nanocrystals by using Ca 2+ responsive deacetylated gellan gum based in situ-nanogel. Int J Pharm 2020; 594:120182. [PMID: 33346126 DOI: 10.1016/j.ijpharm.2020.120182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
The objective of this study is to use a carbohydrate polymer deacetylated gellan gum (DGG) as matrix to design nanocrystals based intranasal in situ gel (IG) for nose-to -brain delivery of drug. The harmine nanocrystals (HAR-NC) as model drug were prepared by coupling homogenization and spray-drying technology. The HAR-NC was redispersed in the (DGG) solutions and formed the ionic-triggered harmine nanocrystals based in situ gel (HAR-NC-IG). The crystal state of HAR remained unchanged during the homogenization and spray-drying. And the HAR-NC-IG with 0.5% DGG exhibited excellent in situ-gelation ability, water retention property and in vitro release behavior. The bioavailability in brain of intranasal HAR-NC-IG were 25-fold higher than that of oral HAR-NC, which could be attributed to nanosizing effect of HAR-NC and bioadhesive property of DGG triggered by nasal fluid. And the HAR-NC-IG could significantly inhibit the expression of acetylcholinesterase (AchE) and increase the content of acetylcholin (ACh) in brain compared with those of reference formulations (p < 0.01). The DGG based nanocrystals-in situ gel was a promising carrier for nose-to-brain delivery of poorly soluble drug, which could prolong the residence time and improve the bioavailability of poorly soluble drugs in brain.
Collapse
|
14
|
Ye J, Fu S, Zhou S, Li M, Li K, Sun W, Zhai Y. Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Harris JT, McNeil AJ. Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Justin T. Harris
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
16
|
Zhang S, Xing M, Li B. Capsule-Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44267-44278. [PMID: 30511568 PMCID: PMC6461212 DOI: 10.1021/acsami.8b17264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many applications using drug-carrying biomedical materials require on-demand, localized delivery of multiple therapeutic agents in precisely controlled and patient-specific time sequences, especially after assembly of the delivery vehicles; however, creating such materials has proven extremely challenging. Here, we report a novel strategy to create polypeptide multilayer films integrated with capsules as vehicles for co-delivery of multiple drugs using layer-by-layer self-assembly technology. Our approach allows the multilayered polypeptide nanofilms and preimpregnated capsules to assemble into innovative biomedical materials with high and controllable loading of multiple drugs at any time postpreparation and to achieve pH-responsive and sustained release. The resulting capsule-integrated polypeptide multilayer films effectively co-deliver various drugs with very different properties, including proteins (e.g., growth factors) and nanoparticles, achieving bovine serum albumin loading of 80 μg cm-2 and release of 2 weeks, and histone loading of 100 μg cm-2 and release of 6 weeks; which also enable Staphylococcus aureus killing efficacy of 83% while maintaining osteoblast viability of >85% with silver nanoparticle delivery; and >5-fold cell adhesion and proliferation capability with live cell percentage of >90% via human recombinant bone morphogenetic protein 2 delivery. The successful development of such fascinating materials can not only function as advanced nanocoatings to reduce two major complications of orthopedic bone injuries (i.e., infection and delayed bone regeneration) but also provide new insights into the design and development of multifunctional materials for various other biomedical applications.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
17
|
Massoumi B, Mozaffari Z, Jaymand M. A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system. Int J Biol Macromol 2018; 117:418-426. [DOI: 10.1016/j.ijbiomac.2018.05.211] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 05/28/2018] [Indexed: 10/16/2022]
|
18
|
Karatasos K, Kritikos G. A microscopic view of graphene-oxide/poly(acrylic acid) physical hydrogels: effects of polymer charge and graphene oxide loading. SOFT MATTER 2018; 14:614-627. [PMID: 29265164 DOI: 10.1039/c7sm02305g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we have examined in detail by means of fully atomistic molecular dynamics simulations, physical hydrogels formed by a polymer electrolyte, poly(acrylic acid), and graphene oxide, at two different charging states of the polymer and two different graphene oxide concentrations. It was found that variations of these parameters incurred drastic changes in general morphological characteristics of the composite materials, the degree of physical adsorption of polyelectrolyte chains onto the graphene oxide surface, the polymer dynamic response at local and global length scales, in the charge distributions around the components, and in the mobility of the counterions. All these microscopic features are expected to significantly affect macroscopic physical properties of the hydrogels, such as their mechanical responses and their electrical behaviors.
Collapse
Affiliation(s)
- Kostas Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | |
Collapse
|
19
|
Chen Y, Gao Y, da Silva LP, Pirraco RP, Ma M, Yang L, Reis RL, Chen J. A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polym Chem 2018. [DOI: 10.1039/c8py00838h] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this research was to develop thermo- and pH-responsive hydrogels based on H-bonds for the sustained release of the small-molecule model drug Methylene Blue (MB).
Collapse
Affiliation(s)
- Yan Chen
- Department of Chemical Engineering and technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yuting Gao
- Department of Chemical Engineering and technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Lucília P. da Silva
- 3B's Research Group - Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco, Guimarães
| | - Rogério P. Pirraco
- 3B's Research Group - Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco, Guimarães
| | - Mengdi Ma
- Department of Chemical Engineering and technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Liming Yang
- Department of Chemical Engineering and technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Rui L. Reis
- 3B's Research Group - Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco, Guimarães
| | - Jie Chen
- Department of Chemical Engineering and technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
20
|
Lai WF, Rogach AL. Hydrogel-Based Materials for Delivery of Herbal Medicines. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11309-11320. [PMID: 28244320 DOI: 10.1021/acsami.6b16120] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herbal medicine, as an integral component of oriental medicine, has assimilated into the lives of Asian people for millennia. The therapeutic efficiency of herbal extracts and ingredients has, however, been limited by various factors, including the lack of targeting capacity and poor bioavailability. Hydrogels are hydrophilic polymer networks that can imbibe a substantial amount of fluids. They are biocompatible, and may enable sustained drug release. Hydrogels, therefore, have attracted widespread studies in pharmaceutical formulation. This article first reviews the latest progress in the development of hydrogel-based materials as carriers of herbal medicines, followed by a discussion of the relationships between hydrogel properties and carrier performance. Finally, the promising potential of using hydrogels to combine medicinal herbs with synthetic drugs in one single treatment will be highlighted as an avenue for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Pharmacy, Health Science Center, Shenzhen University , Shenzhen 518060, China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University , Hong Kong
| | - Andrey L Rogach
- Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong , Hong Kong
| |
Collapse
|
21
|
Lai WF, Susha AS, Rogach AL, Wang G, Huang M, Hu W, Wong WT. Electrospray-mediated preparation of compositionally homogeneous core–shell hydrogel microspheres for sustained drug release. RSC Adv 2017. [DOI: 10.1039/c7ra07568e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compositionally homogeneous core–shell hydrogel microspheres were prepared for sustained drug release.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences
- Health Science Centre
- Shenzhen University
- Shenzhen
- China
| | - Andrei S. Susha
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP)
- City University of Hong Kong
- Hong Kong
| | - Andrey L. Rogach
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP)
- City University of Hong Kong
- Hong Kong
| | - Guoan Wang
- School of Pharmaceutical Sciences
- Health Science Centre
- Shenzhen University
- Shenzhen
- China
| | - Minjian Huang
- School of Pharmaceutical Sciences
- Health Science Centre
- Shenzhen University
- Shenzhen
- China
| | - Weijie Hu
- School of Pharmaceutical Sciences
- Health Science Centre
- Shenzhen University
- Shenzhen
- China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hong Kong
| |
Collapse
|
22
|
Dexter AF, Fletcher N, Creasey RG, Filardo F, Boehm MW, Jack KS. Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides. RSC Adv 2017; 7:27260-27271. [DOI: 10.1039/c7ra02811c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
A peptide sequence was designed to form α-helical fibrils and hydrogels at physiological pH, utilising transient buffering by carbonic acid.
Collapse
Affiliation(s)
- A. F. Dexter
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - N. L. Fletcher
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - R. G. Creasey
- The University of Queensland
- School of Chemical Engineering
- Australia
| | - F. Filardo
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - M. W. Boehm
- The University of Queensland
- School of Chemical Engineering
- Australia
| | - K. S. Jack
- The University of Queensland
- Centre for Microscopy and Microanalysis
- Australia
| |
Collapse
|
23
|
Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels - A platform for therapeutic delivery to mucosal sinus tissue. Eur J Pharm Sci 2016; 96:499-507. [PMID: 27771516 DOI: 10.1016/j.ejps.2016.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022]
Abstract
Mucoadhesive in situ gelling systems (soluble gels) have received considerable attention recently as effective stimuli-transforming vectors for a range of drug delivery applications. Considering this fact, the present work involves systematic formulation development, optimization, functional evaluation and ex vivo performance of thermosensitive soluble gels containing dexamethasone 21-phosphate disodium salt (DXN) as the model therapeutic. A series of in situ gel-forming systems comprising the thermoreversible polymer poloxamer-407 (P407), along with hydroxypropyl methyl cellulose (HPMC) and chitosan were first formulated. The optimized soluble gels were evaluated for their potential to promote greater retention at the mucosal surface, for improved therapeutic efficacy, compared to existing solution/suspension-based steroid formulations used clinically. Optimized soluble gels demonstrated a desirable gelation temperature with Newtonian fluid behaviour observed under storage conditions (4-8°C), and pseudoplastic fluid behaviour recorded at nasal cavity/sinus temperature (≈34°C). The in vitro characterization of formulations including rheological evaluation, textural analysis and mucoadhesion studies of the gel form were investigated. Considerable improvement in mechanical properties and mucoadhesion was observed with incorporation of HPMC and chitosan into the gelling systems. The lead poloxamer-based soluble gels, PGHC4 and PGHC7, which were carried through to ex vivo permeation studies displayed extended drug release profiles in conditions mimicking the human nasal cavity, which indicates their suitability for treating a range of conditions affecting the nasal cavity/sinuses.
Collapse
|
24
|
Çelik E, Bayram C, Akçapınar R, Türk M, Denkbaş EB. Calcified and mechanically debilitated three-dimensional hydrogel environment induces hypertrophic trend in chondrocytes. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516633894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Currently, the main focus on tissue engineering strategies is to mimic the extracellular matrix of the related tissues. Many studies accomplished to build tissue scaffolds to act as the natural surroundings of the specific interest, which can be established to behave like either healthy or unhealthy tissues. The latter one of these conditions is a quite new approach and crucial for the design of three-dimensional in vitro disease models. This study investigates the potential of a composite scaffold consisting hydroxyapatite-integrated fluorenyl-9-methoxycarbonyl diphenylalanine hydrogels by focusing on the optimization of this hybrid scaffold for the development of an in vitro model of degenerative cartilage. Cell growth, chondrocyte proliferation, extracellular matrix production, hypertrophy marker monitoring, scaffold mechanical properties, and morphological analysis were evaluated. Fluorenyl-9-methoxycarbonyl diphenylalanine dipeptides were dissolved in null cell culture media and pH decreased sequentially to compel peptides to self-organize into fibrous hydrogel scaffolds. Nano-hydroxyapatite crystals were incorporated into fluorenyl-9-methoxycarbonyl diphenylalanine hydrogels during the gelation to investigate the effect on chondrocytes. It is observed that hydroxyapatite incorporation into peptide hydrogels significantly increased the alkaline phosphatase activity and assymetrical cell divisions, which is appraised as an outcome of chondrocyte hypertrophy. It is concluded that chondrocytes develop a hypertrophic potential when they are cultured in a media with nano-hydroxyapatites in a three-dimensional cell culture matrix mimicking the extracellular matrix conditions of degenerative cartilage.
Collapse
Affiliation(s)
- Ekin Çelik
- Bioengineering Department, Hacettepe University, Ankara, Turkey
| | - Cem Bayram
- Advanced Technologies Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Rümeysa Akçapınar
- Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Mustafa Türk
- Department of Bioengineering, Faculty of Engineering, Kirikkale University, Kirikkale, Turkey
| | - Emir Baki Denkbaş
- Bioengineering Department, Hacettepe University, Ankara, Turkey
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
Singh V, Snigdha K, Singh C, Sinha N, Thakur AK. Understanding the self-assembly of Fmoc-phenylalanine to hydrogel formation. SOFT MATTER 2015; 11:5353-5364. [PMID: 26059479 DOI: 10.1039/c5sm00843c] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrogels of low molecular weight molecules are important in biomedical applications. Multiple factors are responsible for hydrogel formation, but their role in governing self-assembly to hydrogel formation is poorly understood. Herein, we report the hydrogel formation of fluorenylmethyloxycarbonyl phenylalanine (FmocF) molecule. We used physical and thermal stimuli for solubilizing FmocF above the critical concentration to induce gel formation. The key role of Fmoc, Fmoc and phenylalanine covalent linkage, flexibility of phe side chain, pH, and buffer ions in self-assembly of FmocF to gel formation is described. We found that the collective action of different non-covalent interactions play a role in making FmocF hydrogel. Using powder diffraction and infrared spectroscopy, we also report a new polymorphic form of FmocF after transitioning to hydrogel. In addition, we are proposing a model for drug release from FmocF hydrogel.
Collapse
Affiliation(s)
- Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | | | | | | | | |
Collapse
|
26
|
Hung WC, Cherng JY. Self-assembly of PEG-oligonucleotide-based matrices and lipoplexes as DNase-responsive delivery systems. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv Colloid Interface Sci 2015; 219:27-53. [PMID: 25747522 DOI: 10.1016/j.cis.2015.02.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
There have been major advances in the development of edible colloidal delivery systems for hydrophobic bioactives in recent years. However, there are still many challenges associated with the development of effective delivery systems for hydrophilic bioactives. This review highlights the major challenges associated with developing colloidal delivery systems for hydrophilic bioactive components that can be utilized in foods, pharmaceuticals, and other products intended for oral ingestion. Special emphasis is given to the fundamental physicochemical phenomena associated with encapsulation, stabilization, and release of these bioactive components, such as solubility, partitioning, barriers, and mass transport processes. Delivery systems suitable for encapsulating hydrophilic bioactive components are then reviewed, including liposomes, multiple emulsions, solid fat particles, multiple emulsions, biopolymer particles, cubosomes, and biologically-derived systems. The advantages and limitations of each of these delivery systems are highlighted. This information should facilitate the rational selection of the most appropriate colloidal delivery systems for particular applications in the food and other industries.
Collapse
|
28
|
Niu H, Wang F, Weiss RA. Hydrophobic/Hydrophilic Triblock Copolymers: Synthesis and Properties of Physically Cross-Linked Hydrogels. Macromolecules 2015. [DOI: 10.1021/ma502133f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hui Niu
- Department
of Polymer Engineering, University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
- State
Key Laboratory of Fine Chemicals, Department of Polymer Science and
Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fei Wang
- Department
of Polymer Engineering, University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| | - R. A. Weiss
- Department
of Polymer Engineering, University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| |
Collapse
|
29
|
Fu J, Lv X, Qiu L. Thermo-responsive triblock copolymer micelles containing PEG6000 for either water-soluble or water-insoluble drug sustained release and treatment. RSC Adv 2015. [DOI: 10.1039/c5ra03105b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Thermo-responsive micelles containing PEG6000 for indomethacin and doxorubicin hydrochloride sustained release.
Collapse
Affiliation(s)
- Jun Fu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xinyi Lv
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Liyan Qiu
- Ministry of Education (MOE)
- Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
30
|
Xie X, Ma D, Zhang LM. Fabrication and properties of a supramolecular hybrid hydrogel doped with CdTe quantum dots. RSC Adv 2015. [DOI: 10.1039/c5ra09386d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fluorescent supramolecular hydrogel was fabricated based on the host–guest self-assembly between the amphiphilic block copolymer on the CdTe quantum dot (QD) surface and the cyclic oligosaccharide host molecule, α-cyclodextrin (α-CD).
Collapse
Affiliation(s)
- Xi Xie
- PCFM Lab and GDHPPC Lab
- Institute of Polymer Science
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen (Zhongshan) University
- Guangzhou
| | - Dong Ma
- PCFM Lab and GDHPPC Lab
- Institute of Polymer Science
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen (Zhongshan) University
- Guangzhou
| | - Li-Ming Zhang
- PCFM Lab and GDHPPC Lab
- Institute of Polymer Science
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen (Zhongshan) University
- Guangzhou
| |
Collapse
|
31
|
Piao Y, Chen B. Self-assembled graphene oxide-gelatin nanocomposite hydrogels: Characterization, formation mechanisms, and pH-sensitive drug release behavior. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23636] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yongzhe Piao
- Department of Materials Science and Engineering; University of Sheffield; Mappin Street Sheffield S1 3JD United Kingdom
| | - Biqiong Chen
- Department of Materials Science and Engineering; University of Sheffield; Mappin Street Sheffield S1 3JD United Kingdom
| |
Collapse
|
32
|
Jadczyk T, Faulkner A, Madeddu P. Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol 2014; 169:247-68. [PMID: 22712727 DOI: 10.1111/j.1476-5381.2012.01965.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine holds great promise as a way of addressing the limitations of current treatments of ischaemic disease. In preclinical models, transplantation of different types of stem cells or progenitor cells results in improved recovery from ischaemia. Furthermore, experimental studies indicate that cell therapy influences a spectrum of processes, including neovascularization and cardiomyogenesis as well as inflammation, apoptosis and interstitial fibrosis. Thus, distinct strategies might be required for specific regenerative needs. Nonetheless, clinical studies have so far investigated a relatively small number of options, focusing mainly on the use of bone marrow-derived cells. Rapid clinical translation resulted in a number of small clinical trials that do not have sufficient power to address the therapeutic potential of the new approach. Moreover, full exploitation has been hindered so far by the absence of a solid theoretical framework and inadequate development plans. This article reviews the current knowledge on cell therapy and proposes a model theory for interpretation of experimental and clinical outcomes from a pharmacological perspective. Eventually, with an increased association between cell therapy and traditional pharmacotherapy, we will soon need to adopt a unified theory for understanding how the two practices additively interact for a patient's benefit.
Collapse
Affiliation(s)
- T Jadczyk
- Third Division of Cardiology, Medical University of Silesia, Katovice, Poland
| | | | | |
Collapse
|
33
|
Kleinsmann AJ, Weckenmann NM, Nachtsheim BJ. Phosphate-Triggered Self-Assembly ofN-[(Uracil-5-yl)methyl]urea: A Minimalistic Urea-Derived Hydrogelator. Chemistry 2014; 20:9753-61. [DOI: 10.1002/chem.201402916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 11/07/2022]
|
34
|
Berillo D, Mattiasson B, Kirsebom H. Cryogelation of chitosan using noble-metal ions: in situ formation of nanoparticles. Biomacromolecules 2014; 15:2246-55. [PMID: 24814024 DOI: 10.1021/bm5003834] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the purposes of the project was to develop the method of preparation of 3D macroporous hydrogel with a structure of interconnected pores by the use of noncovalent interactions. The combination of chitosan and noble-metal complexes was investigated as cross-linking agents for the preparation of ionic cryogels (ICs). Furthermore, the treatment of the ICs containing gold complex by glutaraldehyde results in spontaneous formation of gold nanoparticles (AuNPs) and chemical cross-linking of the cryogel. The characterization of prepared macroporous materials was carried out by the use of FTIR, SEM, TEM techniques, and texture analyzer. A new strategy for control of size distribution of AuNPs was suggested. The size distribution of obtained AuNPs and their population inside of walls of cryogels was estimated. A method for quantifying unreacted chloroauric acid in the presence of acetic acid was proposed. The possibility of use of prepared cryogels with immobilized AuNPs as a catalytic flow through reactor is shown.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Biotechnology, Lund University , P.O. Box 124, 22 100, Lund, Sweden
| | | | | |
Collapse
|
35
|
Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2014; 2:147-166. [DOI: 10.1039/c3tb21016b] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun (Camb) 2014; 50:11274-90. [DOI: 10.1039/c4cc03153a] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Various individual or synergistic noncovalent interactions were employed to mediate polymeric micelles for controlled drug delivery.
Collapse
Affiliation(s)
- Jianxun Ding
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Linghui Chen
- School of Chemistry
- Jilin University
- Changchun 130012, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun 130024, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| |
Collapse
|
37
|
Wischke C, Behl M, Lendlein A. Drug-releasing shape-memory polymers – the role of morphology, processing effects, and matrix degradation. Expert Opin Drug Deliv 2013; 10:1193-205. [DOI: 10.1517/17425247.2013.797406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Hao J, Weiss R. Mechanical behavior of hybrid hydrogels composed of a physical and a chemical network. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.01.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Valente AJ, Cruz SM, Murtinho DM, Miguel MG, Muniz EC. DNA–poly(vinyl alcohol) gel matrices: Release properties are strongly dependent on electrolytes and cationic surfactants. Colloids Surf B Biointerfaces 2013; 101:111-7. [DOI: 10.1016/j.colsurfb.2012.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/09/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
|
40
|
Li P, Dou XQ, Tang YT, Zhu S, Gu J, Feng CL, Zhang D. Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release. J Colloid Interface Sci 2012; 387:115-22. [DOI: 10.1016/j.jcis.2012.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|
41
|
|
42
|
Schoener CA, Peppas NA. pH-responsive hydrogels containing PMMA nanoparticles: an analysis of controlled release of a chemotherapeutic conjugate and transport properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2012; 24:1027-40. [PMID: 23683036 PMCID: PMC3662499 DOI: 10.1080/09205063.2012.731376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biopolymers composed of a pH-responsive, hydrophilic poly(methacrylic acid-grafted-ethylene glycol) network polymerized in the presence of poly(methyl methacrylate) nanoparticles were designed for the oral delivery of chemotherapeutics for the treatment of colon cancer. An inulin-doxorubicin conjugate, designed to target the colon and improve doxorubicin efficacy, was loaded into these polymer carriers at an efficiency of 54%. Release studies indicated these polymer carriers minimized conjugate release in low pH conditions and released the conjugate at neutral pH conditions using a two-step pH experiment modeling the stomach and the small intestine. At lower concentration levels, the presence of the polymer carriers did not disrupt tight junctions as determined by transepithelial electrical resistance studies using Caco-2 and HT29-MTX cell lines which are an accurate model of the GI tract epithelia. Permeability values of unmodified doxorubicin and the inulin-doxorubicin conjugate in the presence of the polymer carriers were also determined using the same cell models and ranged from 1.87 to 3.80 × 10 (-6) cm/s.
Collapse
Affiliation(s)
- Cody A. Schoener
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
43
|
McClements DJ. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2012.06.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
de Graaf AJ, Azevedo Próspero dos Santos II, Pieters EH, Rijkers DT, van Nostrum CF, Vermonden T, Kok RJ, Hennink WE, Mastrobattista E. A micelle-shedding thermosensitive hydrogel as sustained release formulation. J Control Release 2012; 162:582-90. [DOI: 10.1016/j.jconrel.2012.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 10/28/2022]
|
45
|
Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev 2012; 64:1111-22. [PMID: 22522139 DOI: 10.1016/j.addr.2012.03.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 12/13/2022]
Abstract
Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which renders SF so exciting for biomedical applications. This pattern along with the versatility of this biopolymer has been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement.
Collapse
|