1
|
Shinde P, Page A, Bhattacharya S. Ethosomes and their monotonous effects on Skin cancer disruption. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1087413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Skin cancer is one of the most prominent diseases, affecting all continents worldwide, and has shown a significant rise in mortality and prevalence. Conventional therapy, including chemotherapy and surgery, has a few drawbacks. The ethosomal systems would be thoroughly reviewed in this compilation, and they would be classified based on constituents: classical ethosomes, binary ethosomes, and transethosomes. Ethosomes systems are model lipid vesicular carriers with a substantial portion of ethanol. The impacts of ethosomal system components, preparation techniques, and their major roles in selecting the final characteristics of these nanocarriers are comprehensively reviewed in this chapter. The special techniques for ethosomes, including the cold approach, hot approach, injection method, mechanical dispersion method, and conventional method, are explained in this chapter. Various evaluation parameters of ethosomes were also explained. Furthermore, ethosomal gels, patches, and creams can be emphasised as innovative pharmaceutical drug formulations. Some hybrid ethosomal vesicles possessing combinatorial cancer therapy using nanomedicine could overcome the current drug resistance of specific cancer cells. Through the use of repurpose therapy, phytoconstituents may be delivered more effectively. A wide range of in vivo models are employed to assess their effectiveness. Ethosomes have provided numerous potential skin cancer therapeutic approaches in the future.
Collapse
|
2
|
Wei H, Liu S, Chu Y, Tong Z, Yang M, Guo Y, Chen T, Wu Y, Sun H, Fan L. Hydrogel-based microneedles of chitosan derivatives for drug delivery. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Dabholkar N, Gorantla S, Waghule T, Rapalli VK, Kothuru A, Goel S, Singhvi G. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int J Biol Macromol 2020; 170:602-621. [PMID: 33387545 DOI: 10.1016/j.ijbiomac.2020.12.177] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
There has been a surge in the use of transdermal drug delivery systems (TDDS) for the past few years. The market of TDDS is expected to reach USD 7.1 billion by 2023, from USD 5.7 billion in 2018, at a CAGR of 4.5%. Microneedles (MNs) are a novel class of TDDS with advantages of reduced pain, low infection risk, ease of application, controlled release of therapeutic agents, and enhanced bioavailability. Biodegradable MNs fabricated from natural polymers have become the center of attention among formulation scientists because of their recognized biodegradability, biocompatibility, ease of fabrication, and sustainable character. In this review, we summarize the various polysaccharides and polypeptide based biomaterials that are used to fabricate biodegradable MNs. Particular emphasis is given to cellulose and its derivatives, starch, and complex carbohydrate polymers such as alginates, chitosan, chondroitin sulfate, xanthan gum, pullulan, and hyaluronic acid. Additionally, novel protein-based polymers such as zein, collagen, gelatin, fish scale and silk fibroin (polyamino acid) biopolymers application in transdermal drug delivery have also been discussed. The current review will provide a unique perspective to the readers on the developments of biodegradable MNs composed of carbohydrates and protein polymers with their clinical applications and patent status.
Collapse
Affiliation(s)
- Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Avinash Kothuru
- Department of Electrical and Electronics Engineering, Principal Investigator: MEMS, Microfluidics and Nanoelectronics Lab, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Hyderabad, India
| | - Sanket Goel
- Department of Electrical and Electronics Engineering, Principal Investigator: MEMS, Microfluidics and Nanoelectronics Lab, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Hyderabad, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
4
|
Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:2023-2050. [PMID: 29944981 DOI: 10.1016/j.nano.2018.05.021] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Over the recent couple of decades, pharmaceutical field has embarked most phenomenal noteworthy achievements in the field of medications as well as drug delivery. The rise of Nanotechnology in this field has reformed the existing drug delivery for targeting, diagnostic, remedial applications and patient monitoring. The convincing usage of nanotechnology in the conveyance of medications that prompts an extension of novel lipid-based nanocarriers and non-liposomal systems has been discussed. Present review deals with the late advances and updates in lipidic nanocarriers, their formulation strategies, challenging aspects, stability profile, clinical applications alongside commercially available products and products under clinical trials. This exploration may give a complete idea viewing the lipid based nanocarriers as a promising choice for the formulation of pharmaceutical products, the challenges looked by the translational process of lipid-based nanocarriers and the combating methodologies to guarantee the headway of these nanocarriers from bench to bedside.
Collapse
Affiliation(s)
- Dinesh K Mishra
- NMIMS, School of Pharmacy & Technology Management, Shirpur (Maharashtra), India.
| | - Ruchita Shandilya
- Department of Molecular Biology ICMR-National Institute for Research in Environmental Health, Bhopal (MP), India
| | - Pradyumna K Mishra
- Department of Molecular Biology ICMR-National Institute for Research in Environmental Health, Bhopal (MP), India
| |
Collapse
|
5
|
Su R, Fan W, Yu Q, Dong X, Qi J, Zhu Q, Zhao W, Wu W, Chen Z, Li Y, Lu Y. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget 2017; 8:38214-38226. [PMID: 28465469 PMCID: PMC5503527 DOI: 10.18632/oncotarget.17130] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/31/2017] [Indexed: 11/25/2022] Open
Abstract
Nanoemulsions have been widely applied to dermal and transdermal drug delivery. However, whether and to what depth the integral nanoemulsions can permeate into the skin is not fully understood. In this study, an environment-responsive dye, P4, was loaded into nanoemulsions to track the transdermal translocation of the nanocarriers, while coumarin-6 was embedded to represent the cargoes. Particle size has great effects on the transdermal transportation of nanoemulsions. Integral nanoemulsions with particle size of 80 nm can diffuse into but not penetrate the viable epidermis. Instead, these nanoemulsions can efficiently fill the whole hair follicle canals and reach as deep as 588 μm underneath the dermal surfaces. The cargos are released from the nanoemulsions and diffuse into the surrounding dermal tissues. On the contrary, big nanoemulsions, with mean particle size of 500 nm, cannot penetrate the stratum corneum and can only migrate along the hair follicle canals. Nanoemulsions with median size, e.g. 200 nm, show moderate transdermal permeation effects among the three-size nanoemulsions. In addition, colocalization between nanoemulsions and immunofluorescence labeled antigen-presenting cells was observed in the epidermis and the hair follicles, implying possible capture of nanoemulsions by these cells. In conclusion, nanoemulsions are advantageous for transdermal delivery and potential in transcutaneous immunization.
Collapse
Affiliation(s)
- Rui Su
- Shaanxi University of Chinese Medicine, Xianyang, P.R. China
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, P.R.China
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, P.R. China
| | - Wufa Fan
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, P.R.China
| | - Qin Yu
- Shanghai Dermatology Hospital, Shanghai, P.R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, P.R.China
| | - Jianping Qi
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, P.R. China
- Shanghai Dermatology Hospital, Shanghai, P.R. China
| | - Quangang Zhu
- Shanghai Dermatology Hospital, Shanghai, P.R. China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, P.R.China
- Shanghai Dermatology Hospital, Shanghai, P.R. China
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, P.R.China
- Shanghai Dermatology Hospital, Shanghai, P.R. China
| | | | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, P.R. China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, P.R.China
- Shanghai Dermatology Hospital, Shanghai, P.R. China
| |
Collapse
|
6
|
Stinson JA, Raja WK, Lee S, Kim HB, Diwan I, Tutunjian S, Panilaitis B, Omenetto FG, Tzipori S, Kaplan DL. Silk Fibroin Microneedles for Transdermal Vaccine Delivery. ACS Biomater Sci Eng 2017; 3:360-369. [PMID: 33465933 DOI: 10.1021/acsbiomaterials.6b00515] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microneedles represent an exciting departure from the existing parenteral injection paradigm for drug delivery, particularly for the administration of vaccines. While the benefit of delivering vaccine antigens to immunocompetent tissue in the skin has been established, there have been varying degrees of success using microneedles to do so. Here, we investigate the use of silk fibroin protein to produce microneedles and evaluate their ability to deliver vaccines against influenza, Clostridium difficile, and Shigella. Fibroin protein from the silkworm Bombyx mori possesses suitable properties for use in a microneedle system, including all-aqueous processing, mechanical strength in dried formats, biocompatibility, and the ability to temperature stabilize biomacromolecules. As such, this biomaterial combines the processing and biocompatibility advantages of a dissolving microneedle system with the product stability and mechanical strength of coated insoluble microneedles. Through successful vaccination of mice against three separate antigens, we establish that silk fibroin is well-suited for use as a solid-coated microneedle delivery system and offers long-term potential similar to that of the leading microneedle biomaterials.
Collapse
Affiliation(s)
- Jordan A Stinson
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, Massachusetts 02155, United States
| | - Waseem K Raja
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, Massachusetts 02155, United States.,Department of Brain and Cognitive Sciences, 43 Vassar Street, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangun Lee
- Department of Infectious Disease and Global Health, 200 Westboro Road, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, United States
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, South Korea
| | - Izzuddin Diwan
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, Massachusetts 02155, United States
| | - Stephen Tutunjian
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, Massachusetts 02155, United States
| | - Bruce Panilaitis
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, Massachusetts 02155, United States
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, 200 Westboro Road, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, United States
| | - David L Kaplan
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines. J Control Release 2016; 238:22-30. [DOI: 10.1016/j.jconrel.2016.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/13/2016] [Accepted: 07/10/2016] [Indexed: 01/18/2023]
|
8
|
Kitaoka M, Naritomi A, Hirakawa Y, Kamiya N, Goto M. Transdermal immunization using solid-in-oil nanodispersion with CpG oligodeoxynucleotide adjuvants. Pharm Res 2014; 32:1486-92. [PMID: 25361868 DOI: 10.1007/s11095-014-1554-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Simple and noninvasive vaccine administration alternatives to injections are desired. A solid-in-oil (S/O) nanodispersion system was able to overcome skin barriers and induce an immune response; however, antibody levels remained low. We applied an immune potentiator, CpG oligodeoxynucleotide (ODN), to enhance the immune response by controlling the T helper 1 (Th1)/T helper 2 (Th2) balance. METHODS S/O nanodispersions containing ovalbumin (OVA) and CpG ODN (CpG-A or CpG-B) were characterized by size distribution analysis and a protein release test. The skin permeation of fluorescence-labeled OVA was observed by fluorescence microscopy. Antigen-specific IgG, IgG1, and IgG2a responses were measured by enzyme-linked immunosorbent assay. RESULTS Co-encapsulation of CpG ODNs in S/O nanodispersions enhanced induction of OVA-specific IgG. S/O nanodispersion containing OVA and CpG-A had a smaller mean particle size and permeated the skin more efficiently. In contrast, CpG-B showed the highest protein release and induction of OVA-specific IgG. IgG subclass analysis revealed that OVA induced a Th2-dominant immune response, while the S/O nanodispersion containing CpG-A skewed the immune response toward a Th1-bias. CONCLUSIONS In combination with CpG ODN, the S/O nanodispersion system efficiently induced an antigen-specific antibody response. The Th1/Th2 immune balance could be controlled by the selection of CpG ODN type.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, 819-0395, Fukuoka, Japan
| | | | | | | | | |
Collapse
|