1
|
Wu L, Sun W, Huang L, Sun L, Dou J, Lu G. Calcium Imaging in Vivo: How to Correctly Select and Apply Fiber Optic Photometric Indicators. Organogenesis 2025; 21:2489667. [PMID: 40186873 PMCID: PMC11980459 DOI: 10.1080/15476278.2025.2489667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025] Open
Abstract
Fiber-photometric is a novel optogenetic method for recording neural activity in vivo, which allows the use of calcium indicators to observe and study the relationship between neural activity and behavior in free-ranging animals. Calcium indicators also convert changes in calcium concentration in cells or tissues into recordable fluorescent signals, which can then be observed using the system of fiber-photometric. To date, there is a paucity of relevant literature on the proper selection and application of fiber-photometric indicators. Therefore, this paper will detail how to correctly select and apply fiber-photometer indicators in four sections: the basic principle of optical fiber photometry, the selection of calcium fluorescent probes and viral vector systems, and the measurement of specific expression of fluorescent proteins in specific tissues. Therefore, the correct use of suitable fiber optic recording indicators will greatly assist researchers in exploring the link between neuronal activity and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lanxia Wu
- School of Psychology, Shandong Second Medical University, Weifang, Shandong, China
| | - Wenxuan Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Linjie Huang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jinhua Dou
- Mental Health Education Center, Shandong Second Medical University, Weifang, Shandong, China
| | - Guohua Lu
- School of Psychology, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Huang Y, Zhang J, Wang X, Jing H, Li H. Aerosol Inhalation of Gene Delivery Therapy for Pulmonary Diseases. Biomolecules 2024; 14:904. [PMID: 39199292 PMCID: PMC11352762 DOI: 10.3390/biom14080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Gene delivery therapy has emerged as a popular approach for the treatment of various diseases. However, it still poses the challenges of accumulation in target sites and reducing off-target effects. Aerosol gene delivery for the treatment of pulmonary diseases has the advantages of high lung accumulation, specific targeting and fewer systemic side effects. However, the key challenge is selecting the appropriate formulation for aerosol gene delivery that can overcome physiological barriers. There are numerous existing gene carriers under study, including viral vectors and non-viral vectors. With the development of biomaterials, more biocompatible substances have applied gene delivery via inhalation. Furthermore, many types of genes can be delivered through aerosol inhalation, such as DNA, mRNA, siRNA and CRISPR/Cas9. Aerosol delivery of different types of genes has proven to be efficient in the treatment of many diseases such as SARS-CoV-2, cystic fibrosis and lung cancer. In this paper, we provide a comprehensive review of the ongoing research on aerosol gene delivery therapy, including the basic respiratory system, different types of gene carriers, different types of carried genes and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Hui Jing
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| |
Collapse
|
3
|
Chen L, Zuo M, Zhou Q, Wang Y. Oncolytic virotherapy in cancer treatment: challenges and optimization prospects. Front Immunol 2023; 14:1308890. [PMID: 38169820 PMCID: PMC10758479 DOI: 10.3389/fimmu.2023.1308890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Oncolytic viruses (OVs) are emerging cancer therapeutics that offer a multifaceted therapeutic platform for the benefits of replicating and lysing tumor cells, being engineered to express transgenes, modulating the tumor microenvironment (TME), and having a tolerable safety profile that does not overlap with other cancer therapeutics. The mechanism of OVs combined with other antitumor agents is based on immune-mediated attack resistance and might benefit patients who fail to achieve durable responses after immune checkpoint inhibitor (ICI) treatment. In this Review, we summarize data on the OV mechanism and limitations of monotherapy, which are currently in the process of combination partner development, especially with ICIs. We discuss some of the hurdles that have limited the preclinical and clinical development of OVs. We also describe the available data and provide guidance for optimizing OVs in clinical practice, as well as a summary of approved and promising novel OVs with clinical indications.
Collapse
Affiliation(s)
- Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Mengsi Zuo
- Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Qin Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
4
|
Karshieva SS, Babayeva G, Pokrovsky VS, Shlyapnikov YM, Shlyapnikova EA, Bugrova AE, Kononikhin AS, Nikolaev EN, Kanev IL. Antitumor Effect of Bleomycin Nanoaerosol in Murine Carcinoma Model. Molecules 2023; 28:molecules28104157. [PMID: 37241899 DOI: 10.3390/molecules28104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Bleomycin, which is widely used as an antitumor agent, possesses serious adverse effects such as pulmonary toxicity. Local nanoaerosol deposition for lung cancer treatment is a promising alternative to drug delivery to lung lesions. The aim of this work is to test the hypothesis that bleomycin nanoaerosol can be effectively used to treat multiple lung metastases. To obtain bleomycin nanoaerosol, an aerosol generator based on electrospray of a solution of a nonvolatile substance with gas-phase neutralization of charged aerosol particles was used. Lung metastases in murine Lewis lung carcinoma and B16 melanoma animal models were counted. The effect of inhaled bleomycin nanoparticles on the number and volume of metastases, as well as pulmonary side effects, was investigated. Using a mouse exposure chamber, the dose-dependent effect of inhaled bleomycin on tumor volume was evaluated in comparison with intraperitoneal administration. Bleomycin nanoaerosol reduced the volume of metastases and produced a higher antitumor effect at much lower doses. It has been established that long-term exposure to nanoaerosol with a low dose of bleomycin is capable of suppressing cancer cell growth. The treatment was well tolerated. In the lungs, minor changes were found in the form of focal-diffuse infiltration of the lung parenchyma.
Collapse
Affiliation(s)
- Saida S Karshieva
- Laboratory of Biochemical Pharmacology and Cancer Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Gulalek Babayeva
- Laboratory of Biochemical Pharmacology and Cancer Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Patrice Lumumba People's Friendship University, 117198 Moscow, Russia
| | - Vadim S Pokrovsky
- Laboratory of Biochemical Pharmacology and Cancer Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Patrice Lumumba People's Friendship University, 117198 Moscow, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Yuri M Shlyapnikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, 142290 Pushchino, Moscow region, Russia
| | - Elena A Shlyapnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, 142290 Pushchino, Moscow region, Russia
| | - Anna E Bugrova
- Emanuel Institute for Biochemical Physics, Russian Academy of Science, 119334 Moscow, Russia
| | - Alexey S Kononikhin
- Center of Life Science, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Evgeny N Nikolaev
- Center of Life Science, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Igor L Kanev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, 142290 Pushchino, Moscow region, Russia
| |
Collapse
|
5
|
Bamburowicz-Klimkowska M, Malecki M, Bystrzejewski M, Kasprzak A, Grudzinski IP. Graphene-encapsulated iron nanoparticles as a non-viral vector for gene delivery into melanoma cells. Biochem Biophys Res Commun 2023; 652:84-87. [PMID: 36841098 DOI: 10.1016/j.bbrc.2023.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
The rapid progress of nanotechnology has led to use different nanomaterials for biomedical applications. Among them, graphene-encapsulated magnetic nanoparticles (GEMNS) are recognized as next generation carbon nanomaterials in translation cancer research. In this study, we utilized green fluorescence protein (GFP) expression plasmid DNA (pDNA) and GEMNS decorated with branched polyethyleneimine (PEI) to yield a novel transporter (GEMNS-PEI/pDNA) for gene delivery into melanoma cells (B16F10). The efficiency of transfection was examined using PCR and confocal microscopy. The studies show that the as-designed GEMNS-PEI construct is successfully used to transfect the melanoma cells with pDNA and it should be considered as a potent non-viral vector for introducing naked nucleic acids into eucaryotic cells.
Collapse
Affiliation(s)
- Magdalena Bamburowicz-Klimkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland.
| | - Maciej Malecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland
| | - Michal Bystrzejewski
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University, L. Pasteura 1, 02-093, Warsaw, Poland
| | - Artur Kasprzak
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| |
Collapse
|
6
|
Li Z, Feiyue Z, Gaofeng L, Haifeng L. Lung cancer and oncolytic virotherapy--enemy's enemy. Transl Oncol 2022; 27:101563. [PMID: 36244134 PMCID: PMC9561464 DOI: 10.1016/j.tranon.2022.101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the malignant tumors that seriously threaten human health worldwide, while the covid-19 virus has become people's nightmare after the coronavirus pandemic. There are too many similarities between cancer cells and viruses, one of the most significant is that both of them are our enemies. The strategy to take the advantage of the virus to beat cancer cells is called Oncolytic virotherapy. When immunotherapy represented by immune checkpoint inhibitors has made remarkable breakthroughs in the clinical practice of lung cancer, the induction of antitumor immunity from immune cells gradually becomes a rapidly developing and promising strategy of cancer therapy. Oncolytic virotherapy is based on the same mechanisms that selectively kill tumor cells and induce systemic anti-tumor immunity, but still has a long way to go before it becomes a standard treatment for lung cancer. This article provides a comprehensive review of the latest progress in oncolytic virotherapy for lung cancer, including the specific mechanism of oncolytic virus therapy and the main types of oncolytic viruses, and the combination of oncolytic virotherapy and existing standard treatments. It aims to provide new insights and ideas on oncolytic virotherapy for lung cancer.
Collapse
Affiliation(s)
- Zhang Li
- Department of Oncology, Gejiu People's Hospital, The Fifth Affiliated Hospital of Kunming Medical University, China
| | - Zhang Feiyue
- Department of Oncology, Yuxi People's Hospital, The Sixth Affiliated Hospital of Kunming Medical University, China
| | - Li Gaofeng
- Department of Thoracic Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, China
| | - Liang Haifeng
- Department of Oncology, Gejiu People's Hospital, The Fifth Affiliated Hospital of Kunming Medical University, China,Corresponding author.
| |
Collapse
|
7
|
Park S, Lee AY, Cho KC, Jung JH, Hong SH, Kim S, Kim KP, Park J, Cho MH. FCH domain only 1 (FCHo1), a potential new biomarker for lung cancer. Cancer Gene Ther 2022; 29:901-907. [PMID: 34413495 DOI: 10.1038/s41417-021-00376-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Lung carcinoma is the main reason for cancer-associated deaths in the world. In a previous study, FCH domain only 1 (FCHo1) which is managed by protein kinase B (AKT), was shown to be activated in lung cancer. FCHo1 knockdown has previously been shown to cause cell death in lung cancer. However, the specific roles of FCHo1 in lung carcinoma remain elusive. Herein, we propose that FCHo1's intracellular mechanism targets the G1 to S phase transition, following the M phase. We demonstrated that F-BAR and mu homology domains exist separately in human lung tissues and that one truncated form is not detected in patients with lung cancer. Furthermore, quantitative global proteome analysis of FCHo1 indicated that the inhibition of G1/S phase transition and FCHo1 RNAi led to the death of cells in the G1/S phase. Noninvasive viral aerosol-mediated delivery of FCHo1 shRNA suppressed cancer progression in mice with non-small-cell lung cancer (NSCLC), suggesting that the delivery of FCHo1 shRNA could be a meaningful therapeutic strategy in lung cancer. Additional studies are needed to make clear the detailed mechanism of action of FCHo1.
Collapse
Affiliation(s)
- Sungjin Park
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ah Young Lee
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Cho Cho
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Hun Jung
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Bio Medicine Laboratory, CKD Research Institute, Yongin, Republic of Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea. .,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Myung-Haing Cho
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Cho KS, Kim S, Chun HB, Cheon JH, Cho MH, Lee AY, Arote RB. Efficient gene transfection to lung cancer cells via Folate-PEI-Sorbitol gene transporter. PLoS One 2022; 17:e0266181. [PMID: 35507584 PMCID: PMC9067668 DOI: 10.1371/journal.pone.0266181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
Lung cancer is known to be one of the fatal diseases in the world and is experiencing treatment difficulties. Many treatments have been discovered and implemented, but death rate of patients with lung cancer continues to remain high. Current treatments for cancer such as chemotherapy, immunotherapy, and radiotherapy have shown considerable results, yet they are accompanied by side effects. One effective method for reducing the cytotoxicity of these treatments is via the use of a nanoparticle-mediated siRNA delivery strategy with selective silencing effects and non-viral vectors. In this study, a folate (FA) moiety ligand-conjugated poly(sorbitol-co-PEI)-based gene transporter was designed by combining low-molecular weight polyethyleneimine (LMW PEI) and D-sorbitol with FA to form FPS. Since folate receptors are commonly overexpressed in various cancer cells, folate-conjugated nanoparticles may be more effectively delivered to selective cancer cells. Additionally, siOPA1 was used to induce apoptosis through mitochondrial fusion. The OPA1 protein stability level is important for maintaining normal mitochondrial cristae structure and function, conserving the inner membrane structure, and protecting cells from apoptosis. Consequently, when FPS/siOPA1 was used for lung cancer in-vitro and in-vivo, it improved cell viability and cellular uptake.
Collapse
Affiliation(s)
- Kye Soo Cho
- Department of Tumor Immunology, National Cancer Center, Goyang, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medical Science, Seoul, Republic of Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung Bin Chun
- Department of Life Science, Waterloo University, Waterloo, Ontario, Canada
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medical Science, Seoul, Republic of Korea
| | | | - Ah Young Lee
- Department of Life Science, Waterloo University, Waterloo, Ontario, Canada
| | - Rohidas B. Arote
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Yang L, Gu X, Yu J, Ge S, Fan X. Oncolytic Virotherapy: From Bench to Bedside. Front Cell Dev Biol 2021; 9:790150. [PMID: 34901031 PMCID: PMC8662562 DOI: 10.3389/fcell.2021.790150] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023] Open
Abstract
Oncolytic viruses are naturally occurring or genetically engineered viruses that can replicate preferentially in tumor cells and inhibit tumor growth. These viruses have been considered an effective anticancer strategy in recent years. They mainly function by direct oncolysis, inducing an anticancer immune response and expressing exogenous effector genes. Their multifunctional characteristics indicate good application prospects as cancer therapeutics, especially in combination with other therapies, such as radiotherapy, chemotherapy and immunotherapy. Therefore, it is necessary to comprehensively understand the utility of oncolytic viruses in cancer therapeutics. Here, we review the characteristics, antitumor mechanisms, clinical applications, deficiencies and associated solutions, and future prospects of oncolytic viruses.
Collapse
Affiliation(s)
- Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
10
|
Goradel NH, Alizadeh A, Hosseinzadeh S, Taghipour M, Ghesmati Z, Arashkia A, Negahdari B. Oncolytic virotherapy as promising immunotherapy against cancer: mechanisms of resistance to oncolytic viruses. Future Oncol 2021; 18:245-259. [PMID: 34821517 DOI: 10.2217/fon-2021-0802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oncolytic virotherapy has currently emerged as a powerful therapeutic approach in cancer treatment. Although the history of using viruses goes back to the early 20th century, the approval of talimogene laherparepvec (T-VEC) in 2015 increased interest in oncolytic viruses (OVs). OVs are multifaceted biotherapeutic agents because they replicate in and kill tumor cells and augment immune responses by releasing immunostimulatory molecules from lysed cells. Despite promising results, some limitations hinder the efficacy of oncolytic virotherapy. The delivery challenges and the upregulation of checkpoints following oncolytic virotherapy also mediate resistance to OVs by diminishing immune responses. Furthermore, the localization of receptors of viruses in the tight junctions, interferon responses, and the aberrant expression of genes involved in the cell cycle of the virus, including their infection and replication, reduce the efficacy of OVs. In this review, we present different mechanisms of resistance to OVs and strategies to overcome them.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Alizadeh
- Department of Biochemistry & Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Iran
| | - Mitra Taghipour
- Department of Biotechnology, Faculty of Agriculture & Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021; 22:9241. [PMID: 34502143 PMCID: PMC8430539 DOI: 10.3390/ijms22179241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Collapse
Affiliation(s)
- David Arango
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Amaury Bittar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Camila Ocasión
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Natasha I. Bloch
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| |
Collapse
|
12
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Lee AY, Cho MH, Kim S. Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy. Expert Opin Drug Deliv 2019; 16:757-772. [PMID: 31282221 DOI: 10.1080/17425247.2019.1641083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer commonly occurs at a high incidence worldwide. Application of aerosol gene delivery systems using various kinds of vectors can improve the patient's quality of life by prolonging the survival rate. AREAS COVERED This review provides a recent update on aerosol gene delivery strategies using various kinds of vectors and gene-modification technologies. Peptide-mediated gene therapy achieves specific targeting of cells and highly improves efficacy. Promoter-operating expression and the CRISPR/Cas9 system are novel gene therapy strategies for effective lung cancer treatment. Furthermore, hybrid systems with a combination of vectors or drugs have been recently applied as new trends in gene therapy. EXPERT OPINION Although aerosol gene delivery has many advantages, physiological barriers in the lungs pose formidable challenges. Targeted gene delivery and gene-editing technology are promising strategies for lung cancer therapy. These strategies may allow the development of safety and high efficiency for clinical application. Recently, hybrid gene therapy combining novel and specific vectors has been developed as an advanced strategy. Although gene therapy for lung cancer is being actively researched, aerosol gene therapy strategies are currently lacking, and further studies on aerosol gene therapy are needed to treat lung cancer.
Collapse
Affiliation(s)
- Ah Young Lee
- a Center for Molecular Recognition Research, Materials and Life Science Research Division , Korea Institute of Science and Technology (KIST) , Seoul , Korea
| | - Myung-Haing Cho
- b Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine , Seoul National University , Seoul , Republic of Korea
| | - Sanghwa Kim
- c Cancer Biology Laboratory , Institut Pasteur Korea , Seongnam-si , Korea
| |
Collapse
|
14
|
Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 2019; 18:689-706. [PMID: 31292532 DOI: 10.1038/s41573-019-0029-0] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
In the wake of the success of modern immunotherapy, oncolytic viruses (OVs) are currently seen as a potential therapeutic option for patients with cancer who do not respond or fail to achieve durable responses following treatment with immune checkpoint inhibitors. OVs offer a multifaceted therapeutic platform because they preferentially replicate in tumour cells, can be engineered to express transgenes that augment their cytotoxic and immunostimulatory activities, and modulate the tumour microenvironment to optimize immune-mediated tumour eradication, both at locoregional and systemic sites of disease. Lysis of tumour cells releases tumour-specific antigens that trigger both the innate and adaptive immune systems. OVs also represent attractive combination partners with other systemically delivered agents by virtue of their highly favourable safety profiles. Rational combinations of OVs with different immune modifiers and/or antitumour agents, based on mechanisms of tumour resistance to immune-mediated attack, may benefit the large, currently underserved, population of patients who respond poorly to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | | | - Beth Kelly
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Jean-Charles Soria
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA.,Department of Medicine and Medical Oncology, Université Paris-Sud, Orsay, France
| |
Collapse
|
15
|
Endoplasmic reticulum-Golgi intermediate compartment protein 3 knockdown suppresses lung cancer through endoplasmic reticulum stress-induced autophagy. Oncotarget 2018; 7:65335-65347. [PMID: 27588471 PMCID: PMC5323159 DOI: 10.18632/oncotarget.11678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022] Open
Abstract
Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies.
Collapse
|
16
|
Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release 2018; 269:374-392. [DOI: 10.1016/j.jconrel.2017.11.036] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
|
17
|
Wu L, Leng D, Cun D, Foged C, Yang M. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens. J Control Release 2017; 260:78-91. [PMID: 28527735 DOI: 10.1016/j.jconrel.2017.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Abstract
Lung cancer is a complex disease caused by a multitude of genetic and environmental factors. The progression of lung cancer involves dynamic changes in the genome and a complex network of interactions between cancer cells with multiple, distinct cell types that form tumors. Combination therapy using different pharmaceuticals has been proven highly effective due to the ability to affect multiple cellular pathways involved in the disease progression. However, the currently used drug combination designs are primarily based on empirical clinical studies, and little attention has been given to dosage regimens, i.e. how administration routes, onsets, and durations of the combinations influence the therapeutic outcome. This is partly because combination therapy is challenged by distinct physicochemical properties and in vivo pharmacokinetics/pharmacodynamics of the individual pharmaceuticals, including small molecule drugs and biopharmaceuticals, which make the optimization of dosing and administration schedule challenging. This article reviews the recent advances in the design and development of combinations of pharmaceuticals for the treatment of lung cancer. Focus is primarily on rationales for the selection of specific combination therapies for lung cancer treatment, and state of the art of delivery technologies and dosage regimens for the combinations, tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Donglei Leng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
18
|
Gankhuyag N, Yu KN, Davaadamdin O, Lee S, Cho WY, Park C, Jiang HL, Singh B, Chae CH, Cho MH, Cho CS. Suppression of Tobacco Carcinogen-Induced Lung Tumorigenesis by Aerosol-Delivered Glycerol Propoxylate Triacrylate-Spermine Copolymer/Short Hairpin Rab25 RNA Complexes in Female A/J Mice. J Aerosol Med Pulm Drug Deliv 2017; 30:81-90. [PMID: 27792477 DOI: 10.1089/jamp.2016.1301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Rab25, a member of Rab family of small guanosine triphosphatase, is associated with progression of various types of human cancers, including lung cancer, the leading cause of cancer-associated deaths around the globe. METHODS In this study, we report the gene therapeutic effect of short hairpin Rab25 RNA (shRab25) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Initially, mice (6 weeks old) were injected with single dose of NNK (2 mg/0.1 mL saline/mouse) by intraperitoneal injection to induce the tumor. Eight weeks later, shRab25 was complexed with glycerol propoxylate triacrylate-spermine (GPT-SPE) copolymer and delivered into tobacco-induced lung cancer models through a nose-only inhalation system twice a week for 2 months. RESULTS GPT-SPE/shRab25 largely decreased the tobacco-induced tumor numbers and tumor volume in the lungs compared to GPT-SPE- or GPT-SPE/shScr-delivered groups. Remarkably, aerosol-delivered GPT-SPE/shRab25 significantly decreased the expression level of Rab25 and other prominent apoptosis-related proteins in female A/J mice. The apoptosis in these mice was determined by detecting the expression level of Bcl-2, proliferating cell nuclear antigen, Bax, and further confirmed by TUNEL assay. CONCLUSIONS Our results strongly confirm the tumorigenic role of Rab25 in tobacco carcinogen-induced lung cancer and hence demonstrate aerosol delivery of shRab25 as a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Nomundelger Gankhuyag
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Kyeong Nam Yu
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Orkhonselenge Davaadamdin
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Somin Lee
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Won Young Cho
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Changhoon Park
- 2 Laboratory of Pathology, College of Veterinary Medicine, Seoul National University , Seoul, Korea
| | - Hu-Lin Jiang
- 3 State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, China
| | - Bijay Singh
- 4 Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Chan-Hee Chae
- 2 Laboratory of Pathology, College of Veterinary Medicine, Seoul National University , Seoul, Korea
| | - Myung-Haing Cho
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Chong-Su Cho
- 4 Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| |
Collapse
|
19
|
Luo CQ, Jang Y, Xing L, Cui PF, Qiao JB, Lee AY, Kim HJ, Cho MH, Jiang HL. Aerosol delivery of folate-decorated hyperbranched polyspermine complexes to suppress lung tumorigenesis via Akt signaling pathway. Int J Pharm 2016; 513:591-601. [DOI: 10.1016/j.ijpharm.2016.09.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/06/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023]
|
20
|
Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside. Molecules 2016; 21:molecules21091249. [PMID: 27657028 PMCID: PMC6272875 DOI: 10.3390/molecules21091249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a potent and specific post-transcriptional gene silencing process. Since its discovery, tremendous efforts have been made to translate RNAi technology into therapeutic applications for the treatment of different human diseases including respiratory diseases, by manipulating the expression of disease-associated gene(s). Similar to other nucleic acid-based therapeutics, the major hurdle of RNAi therapy is delivery. Pulmonary delivery is a promising approach of delivering RNAi therapeutics directly to the airways for treating local conditions and minimizing systemic side effects. It is a non-invasive route of administration that is generally well accepted by patients. However, pulmonary drug delivery is a challenge as the lungs pose a series of anatomical, physiological and immunological barriers to drug delivery. Understanding these barriers is essential for the development an effective RNA delivery system. In this review, the different barriers to pulmonary drug delivery are introduced. The potential of RNAi molecules as new class of therapeutics, and the latest preclinical and clinical studies of using RNAi therapeutics in different respiratory conditions are discussed in details. We hope this review can provide some useful insights for moving inhaled RNAi therapeutics from bench to bedside.
Collapse
|
21
|
Ren D, Li H, Li R, Sun J, Guo P, Han H, Yang Y, Li J. Novel insight into MALAT-1 in cancer: Therapeutic targets and clinical applications. Oncol Lett 2016; 11:1621-1630. [PMID: 26998053 DOI: 10.3892/ol.2016.4138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Long non-protein-coding RNAs (lncRNAs) are emerging as important gene expression regulators that are linked to various biological processes at the post-transcriptional and transcriptional levels. lncRNAs are known to be important in cell proliferation, cell differentiation, apoptosis and metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), a novel lncRNA, is highly conserved amongst mammals. In addition, it has been considered to act as an oncogene, depending on the tumor system. An increasing number of studies have indicated that MALAT-1 may be detected in certain types of human tumors, including lung and bladder cancer and hepatocellular carcinoma. MALAT-1 silencing may be an effective therapeutic approach against tumors. The present study reviews the current knowledge on the functional role of MALAT-1 in the control of various cancers.
Collapse
Affiliation(s)
- Danyang Ren
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650034, P.R. China
| | - Huiying Li
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650034, P.R. China
| | - Renqiu Li
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650034, P.R. China
| | - Jianming Sun
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650034, P.R. China
| | - Pin Guo
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650034, P.R. China
| | - Huiyun Han
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650034, P.R. China
| | - Yuehuang Yang
- Department of Hematology, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650034, P.R. China
| | - Jun Li
- Department of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
22
|
Yu M, Jie X, Xu L, Chen C, Shen W, Cao Y, Lian G, Qi R. Recent Advances in Dendrimer Research for Cardiovascular Diseases. Biomacromolecules 2015; 16:2588-98. [DOI: 10.1021/acs.biomac.5b00979] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maomao Yu
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xu Jie
- School
of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Lu Xu
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cong Chen
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanli Shen
- School
of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yini Cao
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guan Lian
- School
of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Rong Qi
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
- School
of Pharmacy, Shihezi University, Shihezi 832000, China
| |
Collapse
|
23
|
Di Gioia S, Trapani A, Castellani S, Carbone A, Belgiovine G, Craparo EF, Puglisi G, Cavallaro G, Trapani G, Conese M. Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier. Pulm Pharmacol Ther 2015; 34:8-24. [PMID: 26192479 DOI: 10.1016/j.pupt.2015.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022]
Abstract
Gene therapy, i.e. the delivery and expression of therapeutic genes, holds great promise for congenital and acquired respiratory diseases. Non-viral vectors are less toxic and immunogenic than viral vectors, although they are characterized by lower efficiency. However, they have to overcome many barriers, including inflammatory and immune mediators and cells. The respiratory and airway epithelial cells, the main target of these vectors, are coated with a layer of mucus, which hampers the effective reaching of gene therapy vectors carrying either plasmid DNA or small interfering RNA. This barrier is thicker in many lung diseases, such as cystic fibrosis. This review summarizes the most important advancements in the field of non-viral vectors that have been achieved with the use of nanoparticulate (NP) systems, composed either of polymers or lipids, in the lung gene delivery. In particular, different strategies of targeting of respiratory and airway lung cells will be described. Then, we will focus on the two approaches that attempt to overcome the mucus barrier: coating of the nanoparticulate system with poly(ethylene glycol) and treatment with mucolytics. Our conclusions are: 1) Ligand and physical targeting can direct therapeutic gene expression in specific cell types in the respiratory tract; 2) Mucopenetrating NPs are endowed with promising features to be useful in treating respiratory diseases and should be now advanced in pre-clinical trials. Finally, we discuss the development of such polymer- and lipid-based NPs in the context of in vitro and in vivo disease models, such as lung cancer, as well as in clinical trials.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy; Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 12, 20122 Milan, Italy
| | - Giuliana Belgiovine
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Emanuela Fabiola Craparo
- Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giovanni Puglisi
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Gennara Cavallaro
- Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy.
| |
Collapse
|
24
|
Cho WY, Hong SH, Singh B, Islam MA, Lee S, Lee AY, Gankhuyag N, Kim JE, Yu KN, Kim KH, Park YC, Cho CS, Cho MH. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA. Eur J Pharm Biopharm 2015; 94:450-62. [PMID: 26141346 DOI: 10.1016/j.ejpb.2015.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/28/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022]
Abstract
Small interfering RNA (siRNA)-mediated gene silencing represents a promising strategy for treating diseases such as cancer; however, specific gene silencing requires an effective delivery system to overcome the instability and low transfection efficiency of siRNAs. To address this issue, a polysorbitol-based transporter (PSOT) was prepared by low molecular weight branched polyethylenimine (bPEI) crosslinked with sorbitol diacrylate (SDA). Osteopontin (OPN) gene, which is highly associated with non-small cell lung cancer (NSCLC) was targeted by siRNA therapy using siRNA targeting OPN (siOPN). Characterization study confirmed that PSOT formed compact complexes with siOPN and protected siOPN against degradation by RNase. PSOT/siOPN complexes demonstrated low cytotoxicity and enhanced transfection efficiency in vitro, suggesting that this carrier may be suitable for gene silencing. In the A549 and H460 lung cancer cell lines, PSOT/siOPN complexes demonstrated significant silencing efficiency at both RNA and protein levels. To study in vivo tumor growth suppression, two lung cancer cell-xenograft mouse models were prepared and PSOT/siOPN complexes were delivered into the mice through intravenous injection. The siOPN-treated groups demonstrated significantly reduced OPN expression at both the RNA and protein levels as well as suppression of tumor volume and weight. Taken together, siOPN delivery using PSOT may present an effective and novel therapeutic system for lung cancer treatment.
Collapse
Affiliation(s)
- Won-Young Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Mohammad Ariful Islam
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Harvard Medical School, Boston, MA 02115, United States; Laboratory for Nanoengineering & Drug Delivery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Somin Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ah Young Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Nomundelger Gankhuyag
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyeong-Nam Yu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kwang-Ho Kim
- Croen Research, Suwon 443-733, Republic of Korea
| | | | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea; Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
25
|
Omri A. Pulmonary drug and vaccine delivery: therapeutic significance and major challenges. Expert Opin Drug Deliv 2015; 12:853-5. [DOI: 10.1517/17425247.2015.1044277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Zhong D, Ru Y, Wang Q, Zhang J, Zhang J, Wei J, Wu J, Yao L, Li X, Li X. Chimeric ubiquitin ligases inhibit non-small cell lung cancer via negative modulation of EGFR signaling. Cancer Lett 2015; 359:57-64. [DOI: 10.1016/j.canlet.2014.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/10/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023]
|