1
|
Mallik S, Paria B, Firdous SM, Ghazzawy HS, Alqahtani NK, He Y, Li X, Gouda MM. The positive implication of natural antioxidants on oxidative stress-mediated diabetes mellitus complications. J Genet Eng Biotechnol 2024; 22:100424. [PMID: 39674630 PMCID: PMC11416289 DOI: 10.1016/j.jgeb.2024.100424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 12/16/2024]
Abstract
The complementary intervention to modulate diabetes mellitus (DM) metabolism has recently brought the global attention, since DM has become among the global burden diseases. Where, several related pathways elevate the production of superoxide in consequences. For example, the flux of glycation-derived end products (AGEs) could lead to the deactivation of insulin signaling pathways. In that context, many vitamins and phytochemicals in natural sources have high antioxidant impacts that reduce oxidative stress and cell damages. These chemicals could be applied as bioactive antidiabetic agents. Their mode of actions could be from regulating the intracellular reactive oxygen species (ROS) which cause several pro-inflammatory pathways related to the oxidative stress (OS) and DM. Besides, they have a great potential to control the epigenetic mutations and hyperglycemia and help in back the blood glucose to the normal level. Therefore, the current review addresses the important role of natural functional antioxidants in DM management and its association with its OS complications.
Collapse
Affiliation(s)
- Shouvik Mallik
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India
| | - Bijoy Paria
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India
| | - Sayed Mohammad Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India.
| | - Hesham S Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa, Saudi Arabia; Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt.
| | - Nashi K Alqahtani
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa, Saudi Arabia
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Mostafa M Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
2
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
3
|
Li M, Zhao Z, Yi J. Biomaterials Designed to Modulate Reactive Oxygen Species for Enhanced Bone Regeneration in Diabetic Conditions. J Funct Biomater 2024; 15:220. [PMID: 39194658 DOI: 10.3390/jfb15080220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus, characterized by enduring hyperglycemia, precipitates oxidative stress, engendering a spectrum of complications, notably increased bone vulnerability. The genesis of reactive oxygen species (ROS), a byproduct of oxygen metabolism, instigates oxidative detriment and impairs bone metabolism in diabetic conditions. This review delves into the mechanisms of ROS generation and its impact on bone homeostasis within the context of diabetes. Furthermore, the review summarizes the cutting-edge progress in the development of ROS-neutralizing biomaterials tailored for the amelioration of diabetic osteopathy. These biomaterials are engineered to modulate ROS dynamics, thereby mitigating inflammatory responses and facilitating bone repair. Additionally, the challenges and therapeutic prospects of ROS-targeted biomaterials in clinical application of diabetic bone disease treatment is addressed.
Collapse
Affiliation(s)
- Mingshan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Lin Q, Li K, Chen Y, Xie J, Wu C, Cui C, Deng B. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment. Mol Neurobiol 2023:10.1007/s12035-023-03342-7. [PMID: 37115404 DOI: 10.1007/s12035-023-03342-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a major complication of diabetes mellitus with a high incidence. Oxidative stress, which is a crucial pathophysiological pathway of DPN, has attracted much attention. The distortion in the redox balance due to the overproduction of reactive oxygen species (ROS) and the deregulation of antioxidant defense systems promotes oxidative damage in DPN. Therefore, we have focused on the role of oxidative stress in the pathogenesis of DPN and elucidated its interaction with other physiological pathways, such as the glycolytic pathway, polyol pathway, advanced glycosylation end products, protein kinase C pathway, inflammation, and non-coding RNAs. These interactions provide novel therapeutic options targeting oxidative stress for DPN. Furthermore, our review addresses the latest therapeutic strategies targeting oxidative stress for the rehabilitation of DPN. Antioxidant supplements and exercise have been proposed as fundamental therapeutic strategies for diabetic patients through ROS-mediated mechanisms. In addition, several novel drug delivery systems can improve the bioavailability of antioxidants and the efficacy of DPN.
Collapse
Affiliation(s)
- Qingxia Lin
- Department of Psychiatry, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chunxue Wu
- Department of Neurology, Wencheng County People's Hospital, Wenzhou, People's Republic of China
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Cai W, Ai Z, Xue C, Cao R, Dong N. Protective effects of sinomenine hydrochloride on lead-induced oxidative stress, inflammation, and apoptosis in mouse liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7510-7521. [PMID: 36038687 DOI: 10.1007/s11356-022-22386-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Lead, one of the most common heavy metal toxins, seriously affects the health of humans and animals. Sinomenine hydrochloride (SH) shows antioxidative, anti-inflammatory, antiviral, and anticancer properties. Hence, this study investigated the protective effects of SH against Pb-induced liver injury and explored the underlying mechanisms. First, a mouse model of lead acetate (0.5 g/L lead acetate in water, 8 weeks) was established, and SH (100 mg/kg bw in water, 8 weeks) intervention was administered by gavage. Then, the protective effect of SH against lead-induced liver injury was evaluated through serum biochemical analysis, histopathological analysis, and determination of malondialdehyde (MDA) and total antioxidant capacity (T-AOC) levels. The messenger RNA (mRNA) expression levels of the cytokines IL-1β and TNF-α and the apoptosis factors Bax, Bcl-2, and Caspase3 in the liver were detected by quantitative real-time PCR. Then, the expression levels of IL-1β and TNF-α in the liver were detected by ELISA. Immunohistochemical determination of the expression of the apoptosis factors Bax, Bcl-2, and Caspase3 was performed. SH treatment reduced the levels of liver alanine aminotransferase, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and MDA in Pb-treated mice, indicating that SH protected the liver from injury and oxidative stress in Pb-treated mice. SH also increased the liver T-AOC of Pb-treated mice. Quantitative real-time PCR, ELISA, and immunohistochemical analysis showed that SH inhibited apoptosis, as indicated by the regulation of the mRNA expression of Bax and Bcl-2 and the reduced expression of Caspase3 and pro-inflammatory factors (IL-1β and TNF-α) in the livers of Pb-treated mice. These results suggest that SH protects the mouse liver from Pb-induced injury. The underlying mechanism involves antioxidative, anti-inflammatory, and anti-apoptotic processes.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zichun Ai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
6
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|
7
|
Li Q, Gong S, Yao W, Yu Y, Liu C, Wang R, Pan H, Wei M. PEG-interpenetrated genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:345-353. [PMID: 33784224 DOI: 10.1080/21691401.2021.1879104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/17/2021] [Indexed: 02/08/2023]
Abstract
PEG-interpenetrated dual-sensitive hydrogels that load nano lipid carrier (NLC) were researched and developed for topical drug administration. Natural antioxidant α-lipoic acid (ALA) was selected as our model drug. The α-lipoic acid (ALA) nano lipid carrier was successfully prepared by hot melt emulsification and ultrasonic dispersion method, and the physicochemical properties of the nano lipid carrier were investigated, including morphology, particle distribution, polydispersity coefficient, zeta potential and encapsulation efficiency. Carboxymethyl chitosan and poloxamer 407 contributed to pH- and temperature-sensitive properties in the hydrogel, respectively. Natural non-toxic cross-linking agent genipin reacted with carboxymethyl chitosan to form the hydrogel. Poly ethylene glycol (PEG), a polymer compound with good water solubility and biocompatibility, interpenetrated the hydrogel and influenced the mechanical strength and drug release behaviour. FI-IR test verified the successful synthesis of the hydrogel. The rheological parameters indicated that the mechanical strength of the hydrogel was positively correlated with the amount of PEG, and the in vitro dissolution profiles demonstrated that the increasement of PEG could accelerate the drug release rate. The compatibility of the drug delivery system was verified with cells and mice model. Topical delivery of ALA in solution, NLC and NLC-gel was investigated in-vitro.
Collapse
Affiliation(s)
- Qijun Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yibin Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Chao Liu
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Renjun Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med 2021; 171:179-189. [PMID: 34173093 PMCID: PMC8233182 DOI: 10.1007/s10517-021-05191-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 01/02/2023]
Abstract
The review presents modern views about the role of oxidative stress reactions in the pathogenesis of types 1 and 2 diabetes mellitus and their complications based on the analysis of experimental and clinical studies. The sources of increased ROS generation in diabetes are specified, including the main pathways of altered glucose metabolism, oxidative damage to pancreatic β-cells, and endothelial dysfunction. The relationship between oxidative stress, carbonyl stress, and inflammation is described. The significance of oxidative stress reactions associated with hyperglycemia is considered in the context of the “metabolic memory” phenomenon. The results of our studies demonstrated significant ethnic and age-related variability of the LPO—antioxidant defense system parameters in patients with diabetes mellitus, which should be considered during complex therapy of the disease. Numerous studies of the effectiveness of antioxidants in diabetes mellitus of both types convincingly proved that antioxidants should be a part of the therapeutic process. Modern therapeutic strategies in the treatment of diabetes mellitus are aimed at developing new methods of personalized antioxidant therapy, including ROS sources targeting combined with new ways of antioxidant delivery.
Collapse
Affiliation(s)
- M A Darenskaya
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia.
| | - L I Kolesnikova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S I Kolesnikov
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
9
|
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med 2020; 14:583-600. [PMID: 32248333 DOI: 10.1007/s11684-019-0729-1] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction-oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and nonselectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.
Collapse
Affiliation(s)
- Pengju Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xingyun Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Canhua Huang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Kumar S, Sarita, Nehra M, Dilbaghi N, Tankeshwar K, Kim KH. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Genus Tinospora: Ethnopharmacology, Phytochemistry, and Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9232593. [PMID: 27648105 PMCID: PMC5018348 DOI: 10.1155/2016/9232593] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/10/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023]
Abstract
The genus Tinospora includes 34 species, in which several herbs were used as traditional medicines by indigenous groups throughout the tropical and subtropical parts of Asia, Africa, and Australia. The extensive literature survey revealed Tinospora species to be a group of important medicinal plants used for the ethnomedical treatment of colds, headaches, pharyngitis, fever, diarrhea, oral ulcer, diabetes, digestive disorder, and rheumatoid arthritis. Indian ethnopharmacological data points to the therapeutic potential of the T. cordifolia for the treatment of diabetic conditions. While Tinospora species are confusing in individual ingredients and their mechanisms of action, the ethnopharmacological history of those plants indicated that they exhibit antidiabetic, antioxidation, antitumor, anti-inflammation, antimicrobial, antiosteoporosis, and immunostimulation activities. While the clinical applications in modern medicine are lacking convincing evidence and support, this review is aimed at summarizing the current knowledge of the traditional uses, phytochemistry, biological activities, and toxicities of the genus Tinospora to reveal its therapeutic potentials and gaps, offering opportunities for future researches.
Collapse
|