1
|
Kvitne KE, Drevland OM, Haugli N, Skadberg E, Zaré HK, Åsberg A, Robertsen I. Intraindividual Variability in Absolute Bioavailability and Clearance of Midazolam in Healthy Individuals. Clin Pharmacokinet 2023; 62:981-987. [PMID: 37162619 PMCID: PMC10338616 DOI: 10.1007/s40262-023-01257-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Midazolam is the preferred clinical probe drug for assessing CYP3A activity. We have previously shown substantial intraindividual variability in midazolam absolute bioavailability and clearance in patients with obesity before and after weight loss induced by gastric bypass or a strict diet. The objective was to describe intraindividual variability in absolute bioavailability and clearance of midazolam in healthy individuals without obesity. METHODS This study included 33 healthy volunteers [28 ± 8 years, 21% males, body mass index (BMI) 23 ± 2.5 kg/m2] subjected to four pharmacokinetic investigations over a 2-month period (weeks 0, 2, 4, and 8). Semi-simultaneous oral (0 h) and intravenous (2 h later) midazolam dosing was used to assess absolute bioavailability and clearance of midazolam. RESULTS At baseline, mean absolute bioavailability and clearance were 46 ± 18% and 31 ± 10 L/h, respectively. The mean coefficient of variation (CV, %) for absolute bioavailability and clearance of midazolam was 26 ± 15% and 20 ± 10%, respectively. Approximately one-third had a CV > 30% for absolute bioavailability, while 13% had a CV > 30% for clearance. CONCLUSIONS On average, intraindividual variability in absolute bioavailability and clearance of midazolam was low to moderate; however, especially absolute bioavailability showed considerable variability in a relatively large proportion of the individuals.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Ole Martin Drevland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Nora Haugli
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Eline Skadberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | | | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Hole K, Størset E, Olastuen A, Haslemo T, Kro GB, Midtvedt K, Åsberg A, Molden E. Recovery of CYP3A Phenotype after Kidney Transplantation. Drug Metab Dispos 2017; 45:1260-1265. [PMID: 28928137 DOI: 10.1124/dmd.117.078030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022] Open
Abstract
End-stage renal disease impairs drug metabolism via cytochrome P450 CYP3A; however, it is unclear whether CYP3A activity recovers after kidney transplantation. Therefore, the aim of this study was to evaluate the change in CYP3A activity measured as 4β-hydroxycholesterol (4βOHC) concentration after kidney transplantation. In total, data from 58 renal transplant recipients with 550 prospective 4βOHC measurements were included in the study. One sample per patient was collected before transplantation, and 2-12 samples per patient were collected 1-82 days after transplantation. The measured pretransplant 4βOHC concentrations ranged by >7-fold, with a median value of 22.8 ng/ml. Linear mixed-model analysis identified a 0.16-ng/ml increase in 4βOHC concentration per day after transplantation (P < 0.001), indicating a regain in CYP3A activity. Increasing estimated glomerular filtration rate after transplantation was associated with increasing 4βOHC concentration (P < 0.001), supporting that CYP3A activity increases with recovering uremia. In conclusion, this study indicates that CYP3A activity is regained subsequent to kidney transplantation.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Ane Olastuen
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Grete Birkeland Kro
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Karsten Midtvedt
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Anders Åsberg
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| |
Collapse
|
4
|
Dong JQ, Gosset JR, Fahmi OA, Lin Z, Chabot JR, Terra SG, Le V, Chidsey K, Nouri P, Kim A, Buckbinder L, Kalgutkar AS. Examination of the Human Cytochrome P4503A4 Induction Potential of PF-06282999, an Irreversible Myeloperoxidase Inactivator: Integration of Preclinical, In Silico, and Biomarker Methodologies in the Prediction of the Clinical Outcome. Drug Metab Dispos 2017; 45:501-511. [PMID: 28254951 DOI: 10.1124/dmd.116.074476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
The propensity for CYP3A4 induction by 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999), an irreversible inactivator of myeloperoxidase, was examined in the present study. Studies using human hepatocytes revealed moderate increases in CYP3A4 mRNA and midazolam-1'-hydroxylase activity in a PF-06282999 dose-dependent fashion. At the highest tested concentration of 300 μM, PF-06282999 caused maximal induction in CYP3A4 mRNA and enzyme activity ranging from 56% to 86% and 47% t0 72%, respectively, of rifampicin response across the three hepatocyte donor pools. In a clinical drug-drug interaction (DDI) study, the mean midazolam Cmax and area under the curve (AUC) values following 14-day treatment with PF-06282999 decreased in a dose-dependent fashion with a maximum decrease in midazolam AUC0-inf and Cmax of ∼57.2% and 41.1% observed at the 500 mg twice daily dose. The moderate impact on midazolam pharmacokinetics at the 500 mg twice daily dose of PF-06282999 was also reflected in statistically significant changes in plasma 4β-hydroxycholesterol/cholesterol and urinary 6β-hydroxycortisol/cortisol ratios. Changes in plasma and urinary CYP3A4 biomarkers did not reach statistical significance at the 125 mg three times daily dose of PF-06282999, despite a modest decrease in midazolam systemic exposure. Predicted DDI magnitude based on the in vitro induction parameters and simulated pharmacokinetics of perpetrator (PF-06282999) and victim (midazolam) using the Simcyp (Simcyp Ltd., Sheffield, United Kingdom) population-based simulator were in reasonable agreement with the observed clinical data. Since the magnitude of the 4β-hydroxycholesterol or 6β-hydroxycortisol ratio change was generally smaller than the magnitude of the midazolam AUC change with PF-06282999, a pharmacokinetic interaction study with midazolam ultimately proved important for assessment of DDI via CYP3A4 induction.
Collapse
Affiliation(s)
- Jennifer Q Dong
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - James R Gosset
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Odette A Fahmi
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Zhiwu Lin
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Jeffrey R Chabot
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Steven G Terra
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Vu Le
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Kristin Chidsey
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Parya Nouri
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Albert Kim
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Leonard Buckbinder
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| | - Amit S Kalgutkar
- Clinical Pharmacology (J.Q.D.), Pharmacokinetics, Pharmacodynamics, and Metabolism (J.R.G., J.R.C., A.S.K.), Statistics (V.L.), Early Clinical Development (K.C., A.K.), and Cardiovascular and Metabolic Disease Research Unit (L.B.), Pfizer Inc., Cambridge, Massachusetts; and Pharmacokinetics, Pharmacodynamics, and Metabolism (O.A.F., Z.L.), Clinical Development (S.G.T.), and Clinical Assay Group (P.N.), Pfizer Inc., Groton, Connecticut
| |
Collapse
|