1
|
Gollapalli P, Rao ASJ, Manjunatha H, Selvan GT, Shetty P, Kumari NS. Systems Pharmacology and Pharmacokinetics Strategy to Decode Bioactive Ingredients and Molecular Mechanisms from Zingiber officinale as Phyto-therapeutics against Neurological Diseases. Curr Drug Discov Technol 2023; 20:e250822207996. [PMID: 36028974 DOI: 10.2174/1570163819666220825141356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The bioactive constituents from Zingiber officinale (Z. officinale) have shown a positive effect on neurodegenerative diseases like Alzheimer's disease (AD), which manifests as progressive memory loss and cognitive impairment. OBJECTIVE This study investigates the binding ability and the pharmaco-therapeutic potential of Z. officinale with AD disease targets by molecular docking and molecular dynamic (MD) simulation approaches. METHODS By coupling enormous available phytochemical data and advanced computational technologies, the possible molecular mechanism of action of these bioactive compounds was deciphered by evaluating phytochemicals, target fishing, and network biological analysis. RESULTS As a result, 175 bioactive compounds and 264 human target proteins were identified. The gene ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis and molecular docking were used to predict the basis of vital bioactive compounds and biomolecular mechanisms involved in the treatment of AD. Amongst selected bioactive compounds, 10- Gingerdione and 1-dehydro-[8]-gingerdione exhibited significant anti-neurological properties against AD targeting amyloid precursor protein with docking energy of -6.0 and -5.6, respectively. CONCLUSION This study suggests that 10-Gingerdione and 1-dehydro-[8]-gingerdione strongly modulates the anti-neurological activity and are associated with pathological features like amyloid-β plaques and hyperphosphorylated tau protein are found to be critically regulated by these two target proteins. This comprehensive analysis provides a clue for further investigation of these natural compounds' inhibitory activity in drug discovery for AD treatment.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
- Center for Bioinformatics, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Aditya S J Rao
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore-570017, Karnataka, India
| | - Hanumanthappa Manjunatha
- Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Gnanasekaran Tamizh Selvan
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Nalilu Suchetha Kumari
- 1Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| |
Collapse
|
2
|
Kenari HM, Kordafshari G, Moghimi M, Eghbalian F, TaherKhani D. Review of Pharmacological Properties and Chemical Constituents of Pastinaca sativa. J Pharmacopuncture 2021; 24:14-23. [PMID: 33833896 PMCID: PMC8010426 DOI: 10.3831/kpi.2021.24.1.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives Pastinaca sativa (parsnip), is a plant with nutritional and medicinal properties which has been used in all over the world and study about it is rare. In Persian Medicine parsnip is named as zardak and has many uses such as laxative, libido enhancer, kidney stone crusher and diuretic. Because the wide traditional usage of parsnip, in this review the composition and pharmacological properties of this plant are discussed. Methods Some data base such as Cochrane, Scopus, PubMed were searched up to 2018 for studies about Pastinaca sativa. In this review study after consider to exclusion criteria, all of the English review and clinical trial were included. Results Finally, 46 articles were selected for extraction data about the parsnip. Data extraction based on these studies the most important active ingredients of parsnip include coumarins, furanocoumarins, polyacetylenes, essential oils and flavonoids. Different studies determined that Pastinaca sativa has pharmacological effects in CNS, respiratory, gastrointestinal, liver, skin, cardiovascular and urogenital diseases. Conclusion The most important active ingredients in Pastinaca sativa are furanocoumarins, flavonoids and polyacetylenes, and it has many pharmacological properties, including anti-inflammatory, antispasmodic, vasodilator, antifungal, antimicrobial and antidepressant. A main mentioned side effect of parsnip is phototoxicity that was usually reported in direct skin contact. However, family and Some properties and compounds of Pastinaca sativa and Daucus carota are similar but carrots are very popular nowadays. Due to abundant active components and few clinical studies of parsnip, more Studies are recommended to evaluate the effects of it.
Collapse
Affiliation(s)
- Hoorieh Mohammadi Kenari
- Research Institute for Islamic and Complementary Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Moghimi
- Masiha Teb Shomal Knowledge-based Corporation, Sari, Iran
| | - Fatemeh Eghbalian
- Research Institute for Islamic and Complementary Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Zhou Y, Wen J, Wang G. Identification of cytochrome P450 isoenzymes involved in the metabolism of 23-hydroxybetulinic acid in human liver microsomes. PHARMACEUTICAL BIOLOGY 2020; 58:60-63. [PMID: 31868554 PMCID: PMC6968681 DOI: 10.1080/13880209.2019.1701500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/12/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Context: 23-Hydroxybetulinic acid (23-HBA), a major active constituent of Pulsatilla chinensis (Bunge) Regel (Ranunculaceae), exhibits potential antitumor activity. Its metabolism, however, has not yet been studied.Objective: This study focuses on the metabolism of 23-HBA in vitro by human liver microsomes.Materials and methods: The metabolic kinetics of 23-HBA (0.5-100 µM) and the effects of selective CYP450 (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) inhibitors on metabolism of 23-HBA were evaluated in human liver microsomes incubation system and then determined by LC-MS method. The Michaelis-Menten parameters Km and Vmax were initially estimated by analysing Lineweaver-Burk plot. The clearance (CLint) was also calculated.Results: The Vmax, Km, and CLint of 23-HBA were 256.41 ± 11.20 pmol/min/mg, 11.10 ± 1.07 μM, and 23.10 ± 1.32 μL/min/mg, respectively. The metabolism of 23-HBA was significantly inhibited by furafylline (0.05 μM, p < 0.01) and ketoconazole (0.02 μM, p < 0.05). Ticlopidine (1.3 μM, p < 0.05) could inhibit the metabolism of 23-HBA, while the other inhibitors (sulfaphenazole and quinidine) showed nonsignificant inhibition on the metabolism of 23-HBA.Discussion and conclusions: This is the first investigation of the metabolism of 23-HBA in human liver microsomes. The in vitro study indicates that CYP1A2 and CYP3A4 are mainly involved in the metabolism of 23-HBA. Special attention should be given to the pharmacokinetic and clinical outcomes when 23-HBA was co-administrated with other compounds mainly undergoing CYP1A2/CYP3A4-mediated metabolism. Further studies are needed to evaluate the significance of this interaction and strengthen the understanding of traditional Chinese medicine.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhua Wen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Hou W, Liu B, Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem 2020; 189:112081. [DOI: 10.1016/j.ejmech.2020.112081] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
5
|
Conformational turn triggers regio-selectivity in the bioactivation of thiophene-contained compounds mediated by cytochrome P450. J Biol Inorg Chem 2019; 24:1023-1033. [PMID: 31506822 DOI: 10.1007/s00775-019-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
In the present work, we performed Density Functional Theory calculations to explore the bioactivation mechanism of thiophene-containing molecules mediated by P450s. For this purpose, relatively large size compounds, 2,5-diaminothiophene derivatives were selected particularly for this investigation. Here we found the successive regio-selectivity triggered by conformational turn played a significant role in the occurrence of bioactivation. 2,5-Diaminothiophene was oxidized to a 2,5-diimine thiophene-reactive intermediate by Compound I (Cpd I) through successive activations of two N-H bonds (H3-N11 and H1-N6). This reaction exhibited three special characteristics: (1) self-controlled regio-selectivity during the oxidation process. There was a large scale of conformational turn in the abstraction of the first H atom which triggers the selection of the second H for abstraction. (2) Proton-shuttle mechanism. In high spin (HS) state, proton-shuttle mechanism was observed for the abstraction of the second H atom. (3) Spin-selective manner. In protein environment, the energy barrier in HS state was much lower than that in low spin state. The novel proposed bioactivation mechanism of 2,5-diaminothiophene compounds can help us in rational design of thiophene-contained drugs avoiding the occurrence of bioactivation.
Collapse
|
6
|
A census of P. longum's phytochemicals and their network pharmacological evaluation for identifying novel drug-like molecules against various diseases, with a special focus on neurological disorders. PLoS One 2018; 13:e0191006. [PMID: 29320554 PMCID: PMC5761900 DOI: 10.1371/journal.pone.0191006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/25/2017] [Indexed: 02/02/2023] Open
Abstract
Piper longum (P. longum, also called as long pepper) is one of the common culinary herbs that has been extensively used as a crucial constituent in various indigenous medicines, specifically in traditional Indian medicinal system known as Ayurveda. For exploring the comprehensive effect of its constituents in humans at proteomic and metabolic levels, we have reviewed all of its known phytochemicals and enquired about their regulatory potential against various protein targets by developing high-confidence tripartite networks consisting of phytochemical—protein target—disease association. We have also (i) studied immunomodulatory potency of this herb; (ii) developed subnetwork of human PPI regulated by its phytochemicals and could successfully associate its specific modules playing important role in diseases, and (iii) reported several novel drug targets. P10636 (microtubule-associated protein tau, that is involved in diseases like dementia etc.) was found to be the commonly screened target by about seventy percent of these phytochemicals. We report 20 drug-like phytochemicals in this herb, out of which 7 are found to be the potential regulators of 5 FDA approved drug targets. Multi-targeting capacity of 3 phytochemicals involved in neuroactive ligand receptor interaction pathway was further explored via molecular docking experiments. To investigate the molecular mechanism of P. longum’s action against neurological disorders, we have developed a computational framework that can be easily extended to explore its healing potential against other diseases and can also be applied to scrutinize other indigenous herbs for drug-design studies.
Collapse
|
7
|
Zhang XX, Cao YF, Wang LX, Yuan XL, Fang ZZ. Inhibitory effects of tanshinones towards the catalytic activity of UDP-glucuronosyltransferases (UGTs). PHARMACEUTICAL BIOLOGY 2017; 55:1703-1709. [PMID: 28466663 PMCID: PMC6130658 DOI: 10.3109/13880209.2015.1045621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/27/2015] [Accepted: 03/07/2015] [Indexed: 06/07/2023]
Abstract
CONTENTS Danshen is a popular herb employed to treat cardiovascular and cerebrovascular diseases worldwide. Danshen-drug interaction has not been well studied. OBJECTIVE The inhibitory effects of four major tanshinones (tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone I) on UDP-glucuronosyltransferases (UGTs) isoforms were determined to better understand the mechanism of danshen-prescription drugs interaction. MATERIALS AND METHODS In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed. Tanshinones (100 μM) was used to perform the initial screening of inhibition capability. High-performance liquid chromatography (HPLC) was used to separate 4-MU and its glucuronide. In vitro-in vivo extrapolation (IV-IVE) was employed to predict in vivo inhibition situation. RESULTS Cryptotanshinone inhibited UGT1A7 and UGT1A9 with IC50 values of 1.91 ± 0.27 and 0.27 ± 0.03 μM, respectively. Dihydrotanshinone I inhibited UGT1A9-catalyzed 4-MU glucuronidation reaction with the IC50 value of 0.72 ± 0.04 μM. The inhibition of cryptotanshinone towards UGT1A7 and UGT1A9 was best fit to competitive inhibition type, and UGT1A9 was non-competitively inhibited by dihydrotanshinone I. Using in vitro inhibition kinetic parameters (Ki) and in vivo maximum plasma concentration (Cmax) of cryptotanshinone and dihydrotanshinone I, the change of area-under-the-concentration-time curve (AUC) was predicted to be 0.4-4.2%, 3.7-56.3%, and 0.6-6.4% induced by cryptotanshinone and dihydrotanshinone inhibition towards UGT1A7 and UGT1A9, respectively. DISCUSSION AND CONCLUSION The inhibitory effects of tanshinones towards important UGT isoforms were evaluated in the present study, which provide helpful information for exploring the mechanism of danshen-clinical drugs interaction.
Collapse
Affiliation(s)
- Xu-Xin Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The Affiliated Zhongshan Hospital of Dalian University, Zhongshan District, Dalian, China
| | - Yun-Feng Cao
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The Affiliated Zhongshan Hospital of Dalian University, Zhongshan District, Dalian, China
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Li-Xuan Wang
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The Affiliated Zhongshan Hospital of Dalian University, Zhongshan District, Dalian, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Xiao-Lin Yuan
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhong-Ze Fang
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The Affiliated Zhongshan Hospital of Dalian University, Zhongshan District, Dalian, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
- Department of Toxicology, School of Public Health, Tianjin Medical University, Heping District, Tianjin, China
| |
Collapse
|
8
|
Xie H, Wu J, Liu D, Liu M, Zhang H, Huang S, Xiong Y, Xia C. In vitro inhibition of UGT1A3, UGT1A4 by ursolic acid and oleanolic acid and drug-drug interaction risk prediction. Xenobiotica 2017; 47:785-792. [PMID: 27600106 DOI: 10.1080/00498254.2016.1234087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
Abstract
1. Ursolic acid (UA) and oleanolic acid (OA) may have important activity relevant to health and disease prevention. Thus, we studied the activity of UA and OA on UDP-glucuronosyltransferases (UGTs) and used trifluoperazine as a probe substrate to test UGT1A4 activity. Recombinant UGT-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as a probe reaction for other UGT isoforms. 2. UA and OA inhibited UGT1A3 and UGT1A4 activity but did not inhibit other tested UGT isoforms. 3. UA-mediated inhibition of UGT1A3 catalyzed 4-MU-β-d-glucuronidation was via competitive inhibition (IC50 0.391 ± 0.013 μM; Ki 0.185 ± 0.015 μM). UA also competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation (IC50 2.651 ± 0.201 μM; Ki 1.334 ± 0.146 μM). 4. OA offered mixed inhibition of UGT1A3-mediated 4-MU-β-d-glucuronidation (IC50 0.336 ± 0.013 μM; Ki 0.176 ± 0.007 μM) and competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation (IC50 5.468 ± 0.697 μM; Ki 6.298 ± 0.891 μM). 5. Co-administering OA or UA with drugs or products that are substrates of UGT1A3 or UGT1A4 may produce drug-mediated side effects.
Collapse
Affiliation(s)
- Hongbo Xie
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Jie Wu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Dan Liu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Mingyi Liu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Hong Zhang
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Shibo Huang
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Yuqing Xiong
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Chunhua Xia
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| |
Collapse
|
9
|
Adebayo AH, Ashano EE, Yakubu OF, Okubena O. Pro-inflammatory and toxicological evaluation of Hepacare ® in mice. J Taibah Univ Med Sci 2017; 12:313-323. [PMID: 31435257 PMCID: PMC6695049 DOI: 10.1016/j.jtumed.2017.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 11/18/2022] Open
Abstract
Objectives Hepacare® is a widely marketed herbal formulation in Nigeria for treating chronic liver ailments. This study evaluated the safety, as well as pro-inflammatory and genotoxicity effects, of Hepacare® in mice. Methods The effect of the formulation was estimated in a 28-day study where 25 mice were divided into five groups, and Hepacare® was orally administered at 250, 500, 750 and 2500 mg/kg body weight. The biochemical and haematological parameters were determined, organ weights were estimated and histopathology was also conducted. mRNA expression of the pro-inflammatory cytokines, TNF-α and IL-6 was estimated by RT-PCR in acute toxicity experiments. Results The LD50 was calculated at 3807.89 mg/kg body weight in mice. There was a significant increase (p < 0.05) in the ALP activity in the 750 mg/kg treated group, while the 2500 mg/kg group exhibited significant increases in their AST, ALT, ALP, total bilirubin and total protein levels compared with the control group. However, there was a significant dose related increase in monocytes counts in the groups treated with 750 and 2500 mg/kg. There was no significant difference (p > 0.05) in TNF-α and IL-6 mRNA expression in the genotoxicity studies in all of the treatment groups compared with the control. However, several hepatic and nephro-pathological derangements were observed in the groups treated with higher doses of the formulation. Conclusions The study established that the herbal formulation may not induce significant pro-inflammatory toxic responses and genotoxic effects, but prolonged intake of higher doses may cause severe biochemical and clinical abnormalities.
Collapse
Affiliation(s)
- Abiodun H Adebayo
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Efejiro E Ashano
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Omolara F Yakubu
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria
| | | |
Collapse
|
10
|
Liu D, Li S, Qi JQ, Meng DL, Cao YF. The inhibitory effects of nor-oleanane triterpenoid saponins from Stauntonia brachyanthera towards UDP-glucuronosyltransferases. Fitoterapia 2016; 112:56-64. [PMID: 27223851 DOI: 10.1016/j.fitote.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022]
Abstract
The inhibition of UDP-glucuronosyltransferases (UGTs) by herbal components might be an important reason for clinical herb-drug interaction (HDI). The inhibitory effects on UGTs via nor-oleanane triterpenoid saponins, which were the bioactive ingredients from Stauntonia brachyanthera, a traditional Chinese folk medicines with highly biological values, were evaluated comprehensively with recombinant UGT isoforms as enzyme source and a nonspecific substrate 4-methylumbelliferone (4-MU) as substrate. The results showed that there are seven compounds, 2, 3, 4, 8, 9, 13 and 14, respectively, exhibited potential inhibitions towards UGT1A1, UGT1A3 and UGT1A10 among all 23 compounds isolated from the plants. The IC50 values were 17.1μM, 13.5μM, 9.5μM, 15.7μM, 16.3μM, 1.1μM, and 0.3μM, respectively. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A10, UGT1A1 and UGT1A3 was best fit to noncompetitive type and competitive, respectively. The inhibition kinetic parameter (Ki) was calculated to be 39μM, 17μM, 3.3μM, 10μM, 9.3μM, 0.19μM, and 0.016μM, respectively. All these experimental data suggested that HDI might occur when compounds containing herbs were co-administered with drugs which mainly undergo UGTs-mediated metabolism.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuang Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia-Qi Qi
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Da-Li Meng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yun-Feng Cao
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, 200000, China; Translational Medicine Center, The First Affiliated Hospital of Liaoning Medical University, Jing Zhou, China
| |
Collapse
|
11
|
Liu D, Wu J, Xie H, Liu M, Takau I, Zhang H, Xiong Y, Xia C. Inhibitory Effect of Hesperetin and Naringenin on Human UDP-Glucuronosyltransferase Enzymes: Implications for Herb–Drug Interactions. Biol Pharm Bull 2016; 39:2052-2059. [DOI: 10.1248/bpb.b16-00581] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dan Liu
- Clinical Pharmacology Institute, Nanchang University
| | - Jie Wu
- Clinical Pharmacology Institute, Nanchang University
| | - Hongbo Xie
- Clinical Pharmacology Institute, Nanchang University
| | - Mingyi Liu
- Clinical Pharmacology Institute, Nanchang University
| | - Isaiah Takau
- Clinical Pharmacology Institute, Nanchang University
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University
| |
Collapse
|
12
|
Nachtergael A, Poivre M, Belayew A, Duez P. In vitro genotoxicity tests point to an unexpected and harmful effect of a Magnolia and Aristolochia association. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:178-186. [PMID: 26278811 DOI: 10.1016/j.jep.2015.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE in the 1990s, a Belgian cohort of more than 100 patients reported cases of Aristolochic Acid Nephropathy (AAN). This progressive renal and interstitial fibrosis, frequently associated with urothelial malignancies, was consecutive to the Chinese-herbs based slimming capsules intake where a plant Stephania tetrandra S. Moore was replaced by a highly genotoxic Aristolochia species. 70% of the Belgian patients evolved into end-stage renal disease, requiring dialysis or renal transplantation. Furthermore the prevalence of upper urinary tract carcinoma was found alarmingly high in these patients. The Aristolochia adulteration was blamed for the intoxication cases and, to the best of our knowledge, the prescription itself has not been further investigated. AIM OF THE STUDY This work proposes to evaluate the in vitro cytotoxicity and genotoxicity of Aristolochia and Magnolia traditional aqueous decoctions and their association. MATERIALS AND METHODS The cytotoxicity of extracts has been assessed by a MTT cell proliferation assay and the genotoxicity by measuring the presence of γ-H2AX, a phosphorylated histone associated with DNA damages. RESULTS Treating cells for 24h with a mixture 1:1 of Magnolia officinalis and Aristolochia baetica decoctions led to an increase in the production of γ-H2AX. CONCLUSIONS This genotoxic potentiation warrants further studies but may lead to an explanatory factor for the "Chinese herb nephropathy" cases.
Collapse
Affiliation(s)
- Amandine Nachtergael
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, 20 Place du Paarc, 7000 Mons, Belgium
| | - Mélanie Poivre
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, 20 Place du Paarc, 7000 Mons, Belgium
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, 20 Place du Parc, 7000 Mons, Belgium
| | - Pierre Duez
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, 20 Place du Paarc, 7000 Mons, Belgium.
| |
Collapse
|
13
|
Metabolic behavior prediction of pazopanib by cytochrome P450 (CYP) 3A4 by molecular docking. Eur J Drug Metab Pharmacokinet 2015; 41:465-8. [PMID: 25737032 DOI: 10.1007/s13318-015-0252-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
Metabolism-mediated drug adverse effects (e.g., drug-drug interaction, bioactivation, etc.) strongly limit the utilization of clinical drugs. The present study aims to predict the metabolic capability of cytochrome P450 (CYP) 3A4 toward pazopanib which is an excellent drug exhibiting therapeutic role toward various cancers especially for ovarian cancer. Pazopanib can be well docked into the activity cavity of CYP3A4, and the interaction structure in pazopanib was methyl group located besides nitrogen in the five-membered ring. The distance between the hydrogen atom in methyl group and active center is 3.64 Å. The interaction amino acid is Glu374. Furthermore, both pazopanib and ketoconazole were docked into the activity cavity of CYP3A4 to compare their binding potential. The distance between ketoconazole and activity center (2.10 Å) is closer than the distance between pazopanib and activity center of CYP3A4, indicating the easy influence of CYP3A4 inhibitor toward the metabolism of pazopanib. All these data were helpful for the clinical application of pazopanib, and R&D of other tinib drug candidates as new anti-tumor drugs.
Collapse
|
14
|
Ma HY, Sun DX, Cao YF, Ai CZ, Qu YQ, Hu CM, Jiang C, Dong PP, Sun XY, Hong M, Tanaka N, Gonzalez FJ, Ma XC, Fang ZZ. Herb-drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7. Toxicol Appl Pharmacol 2014; 277:86-94. [PMID: 24631340 DOI: 10.1016/j.taap.2014.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7.
Collapse
Affiliation(s)
- Hai-Ying Ma
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Dong-Xue Sun
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yun-Feng Cao
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023, China
| | - Chun-Zhi Ai
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023, China
| | - Yan-Qing Qu
- Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Cui-Min Hu
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023, China; Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Pei-Pei Dong
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Yu Sun
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023, China
| | - Mo Hong
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023, China
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xiao-Chi Ma
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023, China; Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China; College of Pharmacy, Pharmacokinetic and Drug Transport Key Laboratory, Dalian, Medical University, Dalian, China.
| | - Zhong-Ze Fang
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023, China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4:177. [PMID: 24454289 PMCID: PMC3887317 DOI: 10.3389/fphar.2013.00177] [Citation(s) in RCA: 1315] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022] Open
Abstract
The use of herbal medicinal products and supplements has increased tremendously over the past three decades with not less than 80% of people worldwide relying on them for some part of primary healthcare. Although therapies involving these agents have shown promising potential with the efficacy of a good number of herbal products clearly established, many of them remain untested and their use are either poorly monitored or not even monitored at all. The consequence of this is an inadequate knowledge of their mode of action, potential adverse reactions, contraindications, and interactions with existing orthodox pharmaceuticals and functional foods to promote both safe and rational use of these agents. Since safety continues to be a major issue with the use of herbal remedies, it becomes imperative, therefore, that relevant regulatory authorities put in place appropriate measures to protect public health by ensuring that all herbal medicines are safe and of suitable quality. This review discusses toxicity-related issues and major safety concerns arising from the use of herbal medicinal products and also highlights some important challenges associated with effective monitoring of their safety.
Collapse
Affiliation(s)
- Martins Ekor
- Department of Pharmacology, School of Medical Sciences, University of Cape Coast Cape Coast, Ghana
| |
Collapse
|
16
|
Ma GY, Cao YF, Hu CM, Fang ZZ, Sun XY, Hong M, Zhu ZT. Comparison of Inhibition Capability of Scutellarein and Scutellarin Towards Important Liver UDP-Glucuronosyltransferase (UGT) Isoforms. Phytother Res 2013; 28:382-6. [PMID: 23620377 DOI: 10.1002/ptr.4990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Guang-You Ma
- The First Affiliated Hospital of Liaoning Medical University; Jinzhou 121001 China
| | - Yun-Feng Cao
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Cui-Min Hu
- The First Affiliated Hospital of Liaoning Medical University; Jinzhou 121001 China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Zhong-Ze Fang
- The First Affiliated Hospital of Liaoning Medical University; Jinzhou 121001 China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute; Bethesda Maryland 20892 USA
| | - Xiao-Yu Sun
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Mo Hong
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Zhi-Tu Zhu
- The First Affiliated Hospital of Liaoning Medical University; Jinzhou 121001 China
| |
Collapse
|
17
|
Fang ZZ, Krausz KW, Li F, Cheng J, Tanaka N, Gonzalez FJ. Metabolic map and bioactivation of the anti-tumour drug noscapine. Br J Pharmacol 2013; 167:1271-86. [PMID: 22671862 DOI: 10.1111/j.1476-5381.2012.02067.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Noscapine is a promising anti-tumour agent. The purpose of the present study was to describe the metabolic map and investigate the bioactivation of noscapine. EXPERIMENTAL APPROACH Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics was used to analyse the in vitro incubation mixtures, urine and faeces samples from mice treated with noscapine. Recombinant drug-metabolizing enzymes were employed to identify those involved in noscapine metabolism. Hepatic GSH levels and serum biochemistry were also carried out to determine reactive metabolites of noscapine. KEY RESULTS Several novel phase I metabolites of noscapine were detected after oral gavage of mice, including an N-demethylated metabolite, two hydroxylated metabolites, one metabolite undergoing both demethylation and cleavage of the methylenedioxy group and a bis-demethylated metabolite. Additionally, several novel glucuronides were detected, and their structures were elucidated through MS/MS fragmentology. Recombinant enzymes screening showed the involvement of several cytochromes P450, flavin-containing mono-oxygenase 1 and the UDP-glucuronosyltransferases UGT1A1, UGT1A3, UGT1A9 and UGT2B7, in noscapine metabolism. In vitro glutathione trapping revealed the existence of an ortho-quinone reactive intermediate formed through further oxidation of a catechol metabolite. However, this bioactivation process of noscapine does not occur in vivo. Similar to this result, altered glutathione levels in liver and serum biochemistry revealed no evidence of hepatic damage, thus indicating that, at least in mice, noscapine does not induce hepatotoxicity through bioactivation. CONCLUSIONS AND IMPLICATIONS A comprehensive metabolic map and bioactivation evaluation provides important information for the development of noscapine as an anti-tumour drug.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fang ZZ, Cao YF, Hu CM, Hong M, Sun XY, Ge GB, Liu Y, Zhang YY, Yang L, Sun HZ. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs). Toxicol Appl Pharmacol 2013; 267:149-54. [DOI: 10.1016/j.taap.2012.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/16/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
|
19
|
Zhou J, Ouedraogo M, Qu F, Duez P. Potential Genotoxicity of Traditional Chinese Medicinal Plants and Phytochemicals: An Overview. Phytother Res 2013; 27:1745-55. [DOI: 10.1002/ptr.4942] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Jue Zhou
- College of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou 310012 Zhejiang China
| | - Moustapha Ouedraogo
- Laboratory of Pharmacology and Toxicology, Health Sciences Faculty; University of Ouagadougou; 03 BP 7021 Ouagadougou 03 Burkina Faso
- Laboratory of Pharmacognosy, Bromatology and Human Nutrition; Université Libre de Bruxelles (ULB); CP 205-9 B-1050 Brussels Belgium
| | - Fan Qu
- Women's Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 Zhejiang China
| | - Pierre Duez
- Laboratory of Pharmacognosy, Bromatology and Human Nutrition; Université Libre de Bruxelles (ULB); CP 205-9 B-1050 Brussels Belgium
- Department of Therapeutical Chemistry and Pharmacognosy; Université de Mons (UMONS); Bât. Mendeleiev, Av. Maistriau 7000 Mons Belgium
| |
Collapse
|
20
|
Cong M, Hu CM, Cao YF, Fang ZZ, Tang SH, Wang JR, Luo JS. Cryptotanshinone and dihydrotanshinone I exhibit strong inhibition towards human liver microsome (HLM)-catalyzed propofol glucuronidation. Fitoterapia 2013; 85:109-13. [PMID: 23333907 DOI: 10.1016/j.fitote.2013.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/31/2012] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
Abstract
Danshen is one of the most famous herbs in the world, and more and more danshen-prescribed drugs interactions have been reported in recent years. Evaluation of inhibition potential of danshen's major ingredients towards UDP-glucuronosyltransferases (UGTs) will be helpful for understanding detailed mechanisms for danshen-drugs interaction. Therefore, the aim of the present study is to investigate the inhibitory situation of cryptotanshinone and dihydrotanshinone I towards UGT enzyme-catalyzed propofol glucuronidation. In vitro the human liver microsome (HLM) incubation system was used, and the results showed that cryptotanshinone and dihydrotanshinone I exhibited dose-dependent inhibition towards HLM-catalyzed propofol glucuronidation. Dixon plot and Lineweaver-Burk plot showed that the inhibition type was best fit to competitive inhibition type for both cryptotanshinone and dihydrotanshinone I. The second plot using the slopes from the Lineweaver-Burk plot versus the concentrations of cryptotanshinone or dihydrotanshinone I was employed to calculate the inhibition parameters (Ki) to be 0.4 and 1.7μM, respectively. Using the reported maximum plasma concentration (Cmax), the altered in vivo exposure of propofol increased by 10% and 8.2% for the co-administration of dihydrotanshinone I and cryptotanshinone, respectively. All these results indicated the possible danshen-propofol interaction due to the inhibition of dihydrotanshinone I and cryptotanshinone towards the glucuronidation reaction of propofol.
Collapse
Affiliation(s)
- Ming Cong
- First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu C, Cao YF, Fang ZZ, Zhang YY, Hu CM, Sun XY, Huang T, Zeng J, Fan XR, Hong M. Strong inhibition of deoxyschizandrin and schisantherin A toward UDP-glucuronosyltransferase (UGT) 1A3 indicating UGT inhibition-based herb–drug interaction. Fitoterapia 2012; 83:1415-9. [DOI: 10.1016/j.fitote.2012.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Huang YP, Cao YF, Fang ZZ, Zhang YY, Hu CM, Sun XY, Yu ZW, Zhu X, Hong M, Yang L, Sun HZ. Glycyrrhetinic Acid Exhibits Strong Inhibitory Effects Towards UDP-Glucuronosyltransferase (UGT) 1A3 and 2B7. Phytother Res 2012; 27:1358-61. [PMID: 23148031 DOI: 10.1002/ptr.4875] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/23/2012] [Accepted: 10/03/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Yin-Peng Huang
- The First Affiliated Hospital of Liaoning Medical University; Jinzhou 121001 China
| | - Yun-Feng Cao
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Zhong-Ze Fang
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
- Laboratory of Metabolism, Center for Cancer Research; National Cancer Institute; Bethesda Maryland 20892, USA
| | - Yan-Yan Zhang
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Cui-Min Hu
- Laboratory of Metabolism, Center for Cancer Research; National Cancer Institute; Bethesda Maryland 20892, USA
| | - Xiao-Yu Sun
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Zhen-Wen Yu
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Xu Zhu
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Mo Hong
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Lu Yang
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| | - Hong-Zhi Sun
- The First Affiliated Hospital of Liaoning Medical University; Jinzhou 121001 China
- Joint Center for Translational Medicine; Dalian Institute of Chemical Physics Chinese Academy of sciences and The first Affiliated Hospital of Liaoning Medical University; No.457, Zhongshan Road Dalian 116023 China
| |
Collapse
|
23
|
Dong RH, Fang ZZ, Zhu LL, Ge GB, Li XB, Hu CM, Cao YF, Xia YL, Yang L, Liu ZY. Deep understanding of the interaction between thienorphine and UDP-glucuronosyltransferase (UGT) isoforms. Xenobiotica 2012; 43:133-9. [DOI: 10.3109/00498254.2012.706723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
He YJ, Fang ZZ, Ge GB, Jiang P, Jin HZ, Zhang WD, Yang L. The Inhibitory Effect of 20(S
)-Protopanaxatriol (ppt) Towards UGT1A1 and UGT2B7. Phytother Res 2012; 27:628-32. [DOI: 10.1002/ptr.4755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Ya-Jun He
- School of Pharmacy; Shanghai Jiao Tong University; No. 800, Dongchuan Road Shanghai 200240 PR China
- School of Pharmacy; Second Military Medical University; Guohe Road Shanghai 200433 PR China
| | - Zhong-Ze Fang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
| | - Guang-Bo Ge
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
| | - Peng Jiang
- School of Pharmacy; Second Military Medical University; Guohe Road Shanghai 200433 PR China
| | - Hui-Zi Jin
- School of Pharmacy; Shanghai Jiao Tong University; No. 800, Dongchuan Road Shanghai 200240 PR China
| | - Wei-Dong Zhang
- School of Pharmacy; Shanghai Jiao Tong University; No. 800, Dongchuan Road Shanghai 200240 PR China
- School of Pharmacy; Second Military Medical University; Guohe Road Shanghai 200433 PR China
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences; 457 Zhongshan Road Dalian 116023 PR China
| |
Collapse
|
25
|
Ouedraogo M, Baudoux T, Stévigny C, Nortier J, Colet JM, Efferth T, Qu F, Zhou J, Chan K, Shaw D, Pelkonen O, Duez P. Review of current and "omics" methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:492-512. [PMID: 22386524 DOI: 10.1016/j.jep.2012.01.059] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing use of traditional herbal medicines around the world requires more scientific evidence for their putative harmlessness. To this end, a plethora of methods exist, more or less satisfying. In this post-genome era, recent reviews are however scarce, not only on the use of new "omics" methods (transcriptomics, proteomics, metabonomics) for genotoxicity, teratogenicity, and nephrotoxicity assessment, but also on conventional ones. METHODS The present work aims (i) to review conventional methods used to assess genotoxicity, teratogenicity and nephrotoxicity of medicinal plants and mushrooms; (ii) to report recent progress in the use of "omics" technologies in this field; (iii) to underline advantages and limitations of promising methods; and lastly (iv) to suggest ways whereby the genotoxicity, teratogenicity, and nephrotoxicity assessment of traditional herbal medicines could be more predictive. RESULTS Literature and safety reports show that structural alerts, in silico and classical in vitro and in vivo predictive methods are often used. The current trend to develop "omics" technologies to assess genotoxicity, teratogenicity and nephrotoxicity is promising but most often relies on methods that are still not standardized and validated. CONCLUSION Hence, it is critical that toxicologists in industry, regulatory agencies and academic institutions develop a consensus, based on rigorous methods, about the reliability and interpretation of endpoints. It will also be important to regulate the integration of conventional methods for toxicity assessments with new "omics" technologies.
Collapse
Affiliation(s)
- Moustapha Ouedraogo
- Laboratory of Pharmacology and Toxicology, Health Sciences Faculty, University of Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso. mustapha
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brierley SM, Kelber O. Use of natural products in gastrointestinal therapies. Curr Opin Pharmacol 2011; 11:604-11. [DOI: 10.1016/j.coph.2011.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/23/2011] [Indexed: 12/17/2022]
|