1
|
Wu Q, Wang Y, Liu J, Guan X, Chang X, Liu Z, Liu R. Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies. Int J Biochem Cell Biol 2024; 175:106650. [PMID: 39237031 DOI: 10.1016/j.biocel.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Collapse
Affiliation(s)
- Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Laborda P, Gil‐Gil T, Martínez JL, Hernando‐Amado S. Preserving the efficacy of antibiotics to tackle antibiotic resistance. Microb Biotechnol 2024; 17:e14528. [PMID: 39016996 PMCID: PMC11253305 DOI: 10.1111/1751-7915.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Different international agencies recognize that antibiotic resistance is one of the most severe human health problems that humankind is facing. Traditionally, the introduction of new antibiotics solved this problem but various scientific and economic reasons have led to a shortage of novel antibiotics at the pipeline. This situation makes mandatory the implementation of approaches to preserve the efficacy of current antibiotics. The concept is not novel, but the only action taken for such preservation had been the 'prudent' use of antibiotics, trying to reduce the selection pressure by reducing the amount of antibiotics. However, even if antibiotics are used only when needed, this will be insufficient because resistance is the inescapable outcome of antibiotics' use. A deeper understanding of the alterations in the bacterial physiology upon acquisition of resistance and during infection will help to design improved strategies to treat bacterial infections. In this article, we discuss the interconnection between antibiotic resistance (and antibiotic activity) and bacterial metabolism, particularly in vivo, when bacteria are causing infection. We discuss as well how understanding evolutionary trade-offs, as collateral sensitivity, associated with the acquisition of resistance may help to define evolution-based therapeutic strategies to fight antibiotic resistance and to preserve currently used antibiotics.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
| | | | | | | |
Collapse
|
3
|
LaLone V, Smith D, Diaz-Espinosa J, Rosania GR. Quantitative Raman chemical imaging of intracellular drug-membrane aggregates and small molecule drug precipitates in cytoplasmic organelles. Adv Drug Deliv Rev 2023; 202:115107. [PMID: 37769851 PMCID: PMC10841539 DOI: 10.1016/j.addr.2023.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Raman confocal microscopes have been used to visualize the distribution of small molecule drugs within different subcellular compartments. This visualization allows the discovery, characterization, and detailed analysis of the molecular transport phenomena underpinning the Volume of Distribution - a key parameter governing the systemic pharmacokinetics of small molecule drugs. In the specific case of lipophilic small molecules with large Volumes of Distribution, chemical imaging studies using Raman confocal microscopes have revealed how weakly basic, poorly soluble drug molecules can accumulate inside cells by forming stable, supramolecular complexes in association with cytoplasmic membranes or by precipitating out within organelles. To study the self-assembly and function of the resulting intracellular drug inclusions, Raman chemical imaging methods have been developed to measure and map the mass, concentration, and ionization state of drug molecules at a microscopic, subcellular level. Beyond the field of drug delivery, Raman chemical imaging techniques relevant to the study of microscopic drug precipitates and drug-lipid complexes which form inside cells are also being developed by researchers with seemingly unrelated scientific interests. Highlighting advances in data acquisition, calibration methods, and computational data management and analysis tools, this review will cover a decade of technological developments that enable the conversion of spectral signals obtained from Raman confocal microscopes into new discoveries and information about previously unknown, concentrative drug transport pathways driven by soluble-to-insoluble phase transitions occurring within the cytoplasmic organelles of eukaryotic cells.
Collapse
Affiliation(s)
- Vernon LaLone
- Cambium Analytica Research Laboratories, Traverse City, MI, United States
| | - Doug Smith
- Cambium Analytica Research Laboratories, Traverse City, MI, United States
| | - Jennifer Diaz-Espinosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
4
|
Yousef M, Le TS, Zuo J, Park C, Chacra NB, Davies NM, Löbenberg R. Sub-cellular sequestration of alkaline drugs in lysosomes: new insights for pharmaceutical development of lysosomal fluid. Res Pharm Sci 2022; 18:1-15. [PMID: 36846734 PMCID: PMC9951787 DOI: 10.4103/1735-5362.363591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Lysosomal-targeted drug delivery can open a new strategy for drug therapy. However, there is currently no universally accepted simulated or artificial lysosomal fluid utilized in the pharmaceutical industry or recognized by the United States Pharmacopeia (USP). Experimental procedure We prepared a simulated lysosomal fluid (SLYF) and compared its composition to a commercial artificial counterpart. The developed fluid was used to test the dissolution of a commercial product (Robitussin®) of a lysosomotropic drug (dextromethorphan) and to investigate in-vitro lysosomal trapping of two model drugs (dextromethorphan and (+/-) chloroquine). Findings/Results The laboratory-prepared fluid or SLYF contained the essential components for the lysosomal function in concentrations reflective of the physiological values, unlike the commercial product. Robitussin® passed the acceptance criteria for the dissolution of dextromethorphan in 0.1 N HCl medium (97.7% in less than 45 min) but not in the SLYF or the phosphate buffer media (72.6% and 32.2% within 45 min, respectively). Racemic chloroquine showed higher lysosomal trapping (51.9%) in the in-vitro model than dextromethorphan (28.3%) in a behavior supporting in-vivo findings and based on the molecular descriptors and the lysosomal sequestration potential of both. Conclusion and implication A standardized lysosomal fluid was reported and developed for in-vitro investigations of lysosomotropic drugs and formulations.
Collapse
Affiliation(s)
- Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Tyson S. Le
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jieyu Zuo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, South Korea
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Neal M. Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Corresponding authors: N.M. Davies, Tel: +1-7802210828, Fax: +1-7804921217
R. Löbenberg, Tel: +1-7804921255, Fax: +1-7804921217
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Corresponding authors: N.M. Davies, Tel: +1-7802210828, Fax: +1-7804921217
R. Löbenberg, Tel: +1-7804921255, Fax: +1-7804921217
| |
Collapse
|
5
|
Lenz B, Brink A, Mihatsch MJ, Altmann B, Niederhauser U, Steinhuber B, Wyttenbach N, Fischer H. Multiorgan Crystal Deposition of an Amphoteric Drug in Rats Due to Lysosomal Accumulation and Conversion to a Poorly Soluble Hydrochloride Salt. Toxicol Sci 2021; 180:383-394. [PMID: 33454789 PMCID: PMC8041455 DOI: 10.1093/toxsci/kfaa191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Poor solubility of drug candidates mainly affects bioavailability, but poor solubility of drugs and metabolites can also lead to precipitation within tissues, particularly when high doses are tested. RO0728617 is an amphoteric compound bearing basic and acidic moieties that has previously demonstrated good solubility at physiological pH but underwent widespread crystal deposition in multiple tissues in rat toxicity studies. The aim of our investigation was to better characterize these findings and their underlying mechanism(s), and to identify possible screening methods in the drug development process. Main microscopic features observed in rat RO0728617 toxicity studies were extensive infiltrates of crystal-containing macrophages in multiple organs. Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry revealed that these crystals contained the orally administered parent compound, and locality was confirmed to be intracytoplasmic and partly intralysosomal by electron microscopic examination. Crystal formation was explained by lysosomal accumulation of the compound followed by precipitation of the hydrochloride salt under physiological conditions in the lysosomes, which have a lower pH and higher chloride concentration in comparison to the cytosol. This study demonstrates that risk of drug precipitation can be assessed by comparing the estimated lysosomal drug concentration at a given dose with the solubility of the compound at lysosomal conditions.
Collapse
Affiliation(s)
- Barbara Lenz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Andreas Brink
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Michael J Mihatsch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Bernd Altmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Urs Niederhauser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Bernd Steinhuber
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Nicole Wyttenbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Holger Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| |
Collapse
|
6
|
Wu SH, Hsieh CC, Hsu SC, Yao M, Hsiao JK, Wang SW, Lin CP, Huang DM. RBC-derived vesicles as a systemic delivery system of doxorubicin for lysosomal-mitochondrial axis-improved cancer therapy. J Adv Res 2020; 30:185-196. [PMID: 34026295 PMCID: PMC8132207 DOI: 10.1016/j.jare.2020.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/07/2023] Open
Abstract
Introduction Chemotherapeutic drugs are the main intervention for cancer management, but many drawbacks impede their clinical applications. Nanoparticles as drug delivery systems (DDSs) offer much promise to solve these limitations. Objectives A novel nanocarrier composed of red blood cell (RBC)-derived vesicles (RDVs) surface-linked with doxorubicin (Dox) using glutaraldehyde (glu) to form Dox-gluRDVs was investigated for improved cancer therapy. Methods We investigated the in vivo antineoplastic performance of Dox-gluRDVs through intravenous (i.v.) administration in the mouse model bearing subcutaneous (s.c.) B16F10 tumor and examined the in vitro antitumor mechanism and efficacy in a panel of cancer cell lines. Results Dox-gluRDVs can exert superior anticancer activity than free Dox in vitro and in vivo. Distinct from free Dox that is mainly located in the nucleus, but instead Dox-gluRDVs release and efficiently deliver the majority of their conjugated Dox into lysosomes. In vitro mechanism study reveals the critical role of lysosomal Dox accumulation-mediated mitochondrial ROS overproduction followed by the mitochondrial membrane potential loss and the activation of apoptotic signaling for superior anticancer activity of Dox-gluRDVs. Conclusion This work demonstrates the great potential of RDVs to serve a biological DDS of Dox for systemic administration to improve conventional cancer chemotherapeutics.
Collapse
Affiliation(s)
- Shu-Hui Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chia-Chu Hsieh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Ming Yao
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan.,School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
| | - Chih-Peng Lin
- Department of Anesthesiology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
7
|
Norinder U, Tuck A, Norgren K, Munic Kos V. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother 2020; 130:110582. [PMID: 32763818 PMCID: PMC7392152 DOI: 10.1016/j.biopha.2020.110582] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
Lysosomotropic drugs show moderate antiviral effects even on coronaviruses. The antiviral activity is likely due to interference with endosomal pathway. 530 existing drugs were analysed for lysosomotropism, pharmacokinetics and toxicity. 36 drugs were identified that may possibly be suitable for repurposing for COVID-19. Further research is needed to confirm their antiviral effects and safety limits.
Given the speed of viral infection spread, repurposing of existing drugs has been given the highest priority in combating the ongoing COVID-19 pandemic. Only drugs that are already registered or close to registration, and therefore have passed lengthy safety assessments, have a chance to be tested in clinical trials and reach patients quickly enough to help in the current disease outbreak. Here, we have reviewed available evidence and possible ways forward to identify already existing pharmaceuticals displaying modest broad-spectrum antiviral activity which is likely linked to their high accumulation in cells. Several well studied examples indicate that these drugs accumulate in lysosomes, endosomes and biological membranes in general, and thereby interfere with endosomal pathway and intracellular membrane trafficking crucial for viral infection. With the aim to identify other lysosomotropic drugs with possible inherent antiviral activity, we have applied a set of clear physicochemical, pharmacokinetic and molecular criteria on 530 existing drugs. In addition to publicly available data, we have also used our in silico model for the prediction of accumulation in lysosomes and endosomes. By this approach we have identified 36 compounds with possible antiviral effects, also against coronaviruses. For 14 of them evidence of broad-spectrum antiviral activity has already been reported, adding support to the value of this approach. Presented pros and cons, knowledge gaps and methods to identify lysosomotropic antivirals, can help in the evaluation of many drugs currently in clinical trials considered for repurposing to target COVID-19, as well as open doors to finding more potent and safer alternatives.
Collapse
Affiliation(s)
- Ulf Norinder
- Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07 Kista, Sweden; MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Astrud Tuck
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kalle Norgren
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
8
|
Llanos S, Megias D, Blanco-Aparicio C, Hernández-Encinas E, Rovira M, Pietrocola F, Serrano M. Lysosomal trapping of palbociclib and its functional implications. Oncogene 2019; 38:3886-3902. [PMID: 30692638 PMCID: PMC6756094 DOI: 10.1038/s41388-019-0695-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 01/10/2023]
Abstract
Palbociclib is a selective inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6) approved for the treatment of some cancers. The main mechanism of action of palbociclib is to induce cell cycle arrest and senescence on responsive cells. Here, we report that palbociclib concentrates in intracellular acidic vesicles, where it can be readily observed due to its intrinsic fluorescence, and it is released from these vesicles upon dilution or washing out of the extracellular medium. This reversible storage of drugs into acidic vesicles is generally known as lysosomal trapping and, based on this, we uncover novel properties of palbociclib. In particular, a short exposure of cells to palbociclib is sufficient to produce a stable cell-cycle arrest and long-term senescence. Moreover, after washing out the drug, palbociclib-treated cells release the drug to the medium and this conditioned medium is active on susceptible cells. Interestingly, cancer cells resistant to palbociclib also accumulate and release the drug producing paracrine senescence on susceptible cells. Finally, other lysosomotropic drugs, such as chloroquine, interfere with the accumulation of palbociclib into lysosomes, thereby reducing the minimal dose of palbociclib required for cell-cycle arrest and senescence. In summary, lysosomal trapping explains the prolonged temporal activity of palbociclib, the paracrine activity of exposed cells, and the cooperation with lysosomotropic drugs. These are important features that may help to improve the therapeutic dosing and efficacy of palbociclib. Finally, two other clinically approved CDK4/6 inhibitors, ribociclib and abemaciclib, present a similar behavior as palbociclib, suggesting that lysosomal trapping is a property common to all three clinically-approved CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Susana Llanos
- Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Diego Megias
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | | | - Miguel Rovira
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Federico Pietrocola
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Center (CNIO), Madrid, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
Filppula AM, Parvizi R, Mateus A, Baranczewski P, Artursson P. Improved predictions of time-dependent drug-drug interactions by determination of cytosolic drug concentrations. Sci Rep 2019; 9:5850. [PMID: 30971754 PMCID: PMC6458156 DOI: 10.1038/s41598-019-42051-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022] Open
Abstract
The clinical impact of drug-drug interactions based on time-dependent inhibition of cytochrome P450 (CYP) 3A4 has often been overpredicted, likely due to use of improper inhibitor concentration estimates at the enzyme. Here, we investigated if use of cytosolic unbound inhibitor concentrations could improve predictions of time-dependent drug-drug interactions. First, we assessed the inhibitory effects of ten time-dependent CYP3A inhibitors on midazolam 1′-hydroxylation in human liver microsomes. Then, using a novel method, we determined the cytosolic bioavailability of the inhibitors in human hepatocytes, and used the obtained values to calculate their concentrations at the active site of the enzyme, i.e. the cytosolic unbound concentrations. Finally, we combined the data in mechanistic static predictions, by considering different combinations of inhibitor concentrations in intestine and liver, including hepatic concentrations corrected for cytosolic bioavailability. The results were then compared to clinical data. Compared to no correction, correction for cytosolic bioavailability resulted in higher accuracy and precision, generally in line with those obtained by more demanding modelling. The best predictions were obtained when the inhibition of hepatic CYP3A was based on unbound maximal inhibitor concentrations corrected for cytosolic bioavailability. Our findings suggest that cytosolic unbound inhibitor concentrations improves predictions of time-dependent drug-drug interactions for CYP3A.
Collapse
Affiliation(s)
- Anne M Filppula
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden.
| | - Rezvan Parvizi
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden
| | - André Mateus
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden
| | - Pawel Baranczewski
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden.,Department of Pharmacy and SciLifeLab Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Pharmacy, Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden. .,Department of Pharmacy and SciLifeLab Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Pharmacy, Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden.
| |
Collapse
|
10
|
Merlos Rodrigo MA, Buchtelova H, de Los Rios V, Casal JI, Eckschlager T, Hrabeta J, Belhajova M, Heger Z, Adam V. Proteomic Signature of Neuroblastoma Cells UKF-NB-4 Reveals Key Role of Lysosomal Sequestration and the Proteasome Complex in Acquiring Chemoresistance to Cisplatin. J Proteome Res 2019; 18:1255-1263. [PMID: 30592607 DOI: 10.1021/acs.jproteome.8b00867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP) is a widely used agent in the treatment of neuroblastoma. Unfortunately, the development of acquired chemoresistance limits its clinical use. To gain a detailed understanding of the mechanisms underlying the development of such chemoresistance, we comparatively analyzed established cisplatin-resistant neuroblastoma cell line (UKF-NB-4CDDP) and its sensitive counterpart (UKF-NB-4). First, using viability screenings, we confirmed the decreased sensitivity of tested cells to cisplatin and identified a cross-resistance to carboplatin and oxaliplatin. Then, the proteomic signatures were analyzed using nano liquid chromatography with tandem mass spectrometry. Among the proteins responsible for UKF-NB-4CDDP chemoresistance, ion channels transport family proteins, ATP-binding cassette superfamily proteins (ATP = adenosine triphosphate), solute carrier-mediated trans-membrane transporters, proteasome complex subunits, and V-ATPases were identified. Moreover, we detected markedly higher proteasome activity in UKF-NB-4CDDP cells and a remarkable lysosomal enrichment that can be inhibited by bafilomycin A to sensitize UKF-NB-4CDDP to CDDP. Our results indicate that lysosomal sequestration and proteasome activity may be one of the key mechanisms responsible for intrinsic chemoresistance of neuroblastoma to CDDP.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic.,Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic
| | - Hana Buchtelova
- Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic.,Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic
| | - Vivian de Los Rios
- Functional Proteomics, Department of Molecular Biomedicine and Proteomic Facility , Centro de Investigaciones Biológicas , Ramiro de Maeztu 9 , Madrid 280 40 , Spain
| | - José Ignacio Casal
- Functional Proteomics, Department of Molecular Biomedicine and Proteomic Facility , Centro de Investigaciones Biológicas , Ramiro de Maeztu 9 , Madrid 280 40 , Spain
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine , Charles University, and University Hospital Motol , V Uvalu 84 , 150 06 Prague 5 , Czech Republic
| | - Jan Hrabeta
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine , Charles University, and University Hospital Motol , V Uvalu 84 , 150 06 Prague 5 , Czech Republic
| | - Marie Belhajova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine , Charles University, and University Hospital Motol , V Uvalu 84 , 150 06 Prague 5 , Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic.,Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic.,Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic
| |
Collapse
|
11
|
Lenz B, Braendli-Baiocco A, Engelhardt J, Fant P, Fischer H, Francke S, Fukuda R, Gröters S, Harada T, Harleman H, Kaufmann W, Kustermann S, Nolte T, Palazzi X, Pohlmeyer-Esch G, Popp A, Romeike A, Schulte A, Lima BS, Tomlinson L, Willard J, Wood CE, Yoshida M. Characterizing Adversity of Lysosomal Accumulation in Nonclinical Toxicity Studies: Results from the 5th ESTP International Expert Workshop. Toxicol Pathol 2018; 46:224-246. [PMID: 29471779 DOI: 10.1177/0192623317749452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lysosomes have a central role in cellular catabolism, trafficking, and processing of foreign particles. Accumulation of endogenous and exogenous materials in lysosomes represents a common finding in nonclinical toxicity studies. Histologically, these accumulations often lack distinctive features indicative of lysosomal or cellular dysfunction, making it difficult to consistently interpret and assign adverse dose levels. To help address this issue, the European Society of Toxicologic Pathology organized a workshop where representative types of lysosomal accumulation induced by pharmaceuticals and environmental chemicals were presented and discussed. The expert working group agreed that the diversity of lysosomal accumulations requires a case-by-case weight-of-evidence approach and outlined several factors to consider in the adversity assessment, including location and type of cell affected, lysosomal contents, severity of the accumulation, and related pathological effects as evidence of cellular or organ dysfunction. Lysosomal accumulations associated with cytotoxicity, inflammation, or fibrosis were generally considered to be adverse, while those found in isolation (without morphologic or functional consequences) were not. Workshop examples highlighted the importance of thoroughly characterizing the biological context of lysosomal effects, including mechanistic data and functional in vitro readouts if available. The information provided here should facilitate greater consistency and transparency in the interpretation of lysosomal effects.
Collapse
Affiliation(s)
- B Lenz
- 1 Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - A Braendli-Baiocco
- 1 Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - J Engelhardt
- 2 Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - P Fant
- 3 Charles River Laboratories, Lyon, France
| | - H Fischer
- 1 Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - S Francke
- 4 Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, Maryland, USA
| | - R Fukuda
- 5 Axcelead Drug Discovery Partners, Inc., Kanagawa, Japan
| | - S Gröters
- 6 Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - T Harada
- 7 Institute of Environmental Toxicology, Ibaraki, Japan
| | - H Harleman
- 8 Global Medical, Clinical and Regulatory Affairs, Global Preclinical Development and Management, Fresenius-Kabi Deutschland GmbH, Bad Homburg, Germany
| | | | - S Kustermann
- 1 Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - T Nolte
- 10 Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - X Palazzi
- 11 Global Pathology, DSRD, Pfizer WRD, Groton, Connecticut, USA
| | - G Pohlmeyer-Esch
- 10 Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - A Popp
- 12 Global Preclinical Safety, AbbVie, Ludwigshafen, Germany
| | - A Romeike
- 13 Covance Laboratories, Inc., Rueil-Malmaison, France
| | - A Schulte
- 14 Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - B Silva Lima
- 15 Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - L Tomlinson
- 11 Global Pathology, DSRD, Pfizer WRD, Groton, Connecticut, USA
| | - J Willard
- 16 CDER, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - C E Wood
- 17 Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - M Yoshida
- 18 Food Safety Commission, Cabinet Office, Tokyo, Japan
| |
Collapse
|
12
|
de Klerk DJ, Honeywell RJ, Jansen G, Peters GJ. Transporter and Lysosomal Mediated (Multi)drug Resistance to Tyrosine Kinase Inhibitors and Potential Strategies to Overcome Resistance. Cancers (Basel) 2018; 10:503. [PMID: 30544701 PMCID: PMC6315453 DOI: 10.3390/cancers10120503] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosine kinase inhibitors are a class of chemotherapeutic drugs that target specific protein kinases. These tyrosine kinase inhibitors constitute a relatively new class of drugs which target for instance Bcr-Abl, Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Despite some initial successes, the overall therapeutic benefit of tyrosine kinase inhibitors in the clinic has been mixed. Next to mutations in the target, multidrug resistance is a major obstacle for which still no clinically effective strategies have been developed. Major mechanisms of multidrug resistance are mediated by drug efflux transporter proteins. Moreover, there is accumulating evidence that multidrug resistance can also be caused by lysosomal sequestration of drugs, effectively trapping tyrosine kinase inhibitors and preventing them from reaching their target. Lysosomal drug sequestration seems to work together with ATP-binding cassette transporters, increasing the capacity of lysosomes to mediate sequestration. Both membrane efflux transporter proteins and lysosomes present potential therapeutic targets that could reverse multidrug resistance and increase drug efficacy in combination therapy. This review describes both mechanisms and discusses a number of proposed strategies to circumvent or reverse tyrosine kinase inhibitor-related multidrug resistance.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Laboratory Medical Oncology, Amsterdam UMC, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Richard J Honeywell
- Laboratory Medical Oncology, Amsterdam UMC, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Gerrit Jansen
- Rheumatology and Immunology Center-Location VUmc, Amsterdam UMC, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Treyer A, Mateus A, Wiśniewski JR, Boriss H, Matsson P, Artursson P. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids. Mol Pharm 2018; 15:2224-2233. [DOI: 10.1021/acs.molpharmaceut.8b00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrea Treyer
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - André Mateus
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | - Pär Matsson
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
- Science for Life Laboratory Drug Discovery and Development Platform (SciLifelab DDD-P), Uppsala 75123, Sweden
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
14
|
Woldemichael T, Rosania GR. The physiological determinants of drug-induced lysosomal stress resistance. PLoS One 2017; 12:e0187627. [PMID: 29117253 PMCID: PMC5678708 DOI: 10.1371/journal.pone.0187627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs.
Collapse
Affiliation(s)
- Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
15
|
Assmus F, Houston JB, Galetin A. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs. Eur J Pharm Sci 2017; 109:419-430. [DOI: 10.1016/j.ejps.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
|
16
|
Ersoy SC, Heithoff DM, Barnes L, Tripp GK, House JK, Marth JD, Smith JW, Mahan MJ. Correcting a Fundamental Flaw in the Paradigm for Antimicrobial Susceptibility Testing. EBioMedicine 2017; 20:173-181. [PMID: 28579300 PMCID: PMC5478264 DOI: 10.1016/j.ebiom.2017.05.026] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022] Open
Abstract
The emergence and prevalence of antibiotic-resistant bacteria are an increasing cause of death worldwide, resulting in a global ‘call to action’ to avoid receding into an era lacking effective antibiotics. Despite the urgency, the healthcare industry still relies on a single in vitro bioassay to determine antibiotic efficacy. This assay fails to incorporate environmental factors normally present during host-pathogen interactions in vivo that significantly impact antibiotic efficacy. Here we report that standard antimicrobial susceptibility testing (AST) failed to detect antibiotics that are in fact effective in vivo; and frequently identified antibiotics that were instead ineffective as further confirmed in mouse models of infection and sepsis. Notably, AST performed in media mimicking host environments succeeded in identifying specific antibiotics that were effective in bacterial clearance and host survival, even though these same antibiotics failed in results using standard test media. Similarly, our revised media further identified antibiotics that were ineffective in vivo despite passing the AST standard for clinical use. Supplementation of AST medium with sodium bicarbonate, an abundant in vivo molecule that stimulates global changes in bacterial structure and gene expression, was found to be an important factor improving the predictive value of AST in the assignment of appropriate therapy. These findings have the potential to improve the means by which antibiotics are developed, tested, and prescribed. Standard antimicrobial susceptibility testing (AST) is fundamentally flawed because it is based largely on in vitro efficacy. AST performed under conditions that mimic natural infections improves the assignment of appropriate antibiotic therapy. In vivo altered susceptibility (IVAS) provides a new paradigm for drug discovery and therapeutic intervention.
Drug testing often excludes potent antibiotics for the treatment of bacterial infections, while frequently identifying antibiotics that are ineffective. However, drug testing under conditions that mimic natural infections succeeded in identifying effective antibiotics, even though these same antibiotics failed standard tests. This work suggests that standard drug-testing may be hindering patient treatment and slowing the process of discovery of new, effective, and safe antibiotics because it disqualifies effective compounds. These findings call for an overhaul of standardized drug testing which hasn't changed in > 50 years.
Collapse
Affiliation(s)
- Selvi C Ersoy
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Douglas M Heithoff
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA
| | - Lucien Barnes
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Geneva K Tripp
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - John K House
- University of Sydney, Faculty of Veterinary Science, Camden, New South Wales, Australia
| | - Jamey D Marth
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA; Sanford Burnham Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA 92037, USA
| | - Michael J Mahan
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
17
|
Ufuk A, Assmus F, Francis L, Plumb J, Damian V, Gertz M, Houston JB, Galetin A. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages. Mol Pharm 2017; 14:1033-1046. [PMID: 28252969 DOI: 10.1021/acs.molpharmaceut.6b00908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (Kp,cell) of all drugs (5 μM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH4Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro Kp,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in Kp,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean Kp,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH4Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Frauke Assmus
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Laura Francis
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Jonathan Plumb
- Respiratory and Allergy Clinical Research Facility, University Hospital of South Manchester , Manchester, U.K
| | - Valeriu Damian
- Computational Modeling Sciences, DDS, GlaxoSmithKline , Upper Merion, Pennsylvania 19406, United States
| | - Michael Gertz
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K.,Pharmaceutical Sciences, pRED, Roche Innovation Center , Basel, Switzerland
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| |
Collapse
|
18
|
Tracking antitumor metallodrugs: promising agents with the Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Future Med Chem 2016; 8:527-44. [PMID: 27096164 DOI: 10.4155/fmc.16.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Research on the field of metal complexes for the treatment of cancer diseases has attracted increasing interest due to the urgency in finding more efficient and selective treatments. Owing to their wide structural diversity, organometallic complexes appear as potential alternatives to the design of new anticancer candidates. Herein, we review recent progress in our work toward the development of new drugs based on Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Their design and chemical properties are reviewed and correlated with their biological effects, in particular the key role that coligands play in the overall behavior of the complex.
Collapse
|
19
|
Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat 2016; 24:23-33. [DOI: 10.1016/j.drup.2015.11.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022]
|
20
|
Ufuk A, Somers G, Houston JB, Galetin A. In Vitro Assessment of Uptake and Lysosomal Sequestration of Respiratory Drugs in Alveolar Macrophage Cell Line NR8383. Pharm Res 2015. [PMID: 26224396 PMCID: PMC4628094 DOI: 10.1007/s11095-015-1753-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose To assess accumulation and lysosomal sequestration of 9 drugs used in respiratory indications (plus imipramine as positive control) in the alveolar macrophage (AM) cell line NR8383. Methods For all drugs, uptake at 5 μM was investigated at 37 and 4°C to delineate active uptake and passive diffusion processes. Accumulation of basic clarithromycin, formoterol and imipramine was also assessed over 0.1–100 μM concentration range. Lysosomal sequestration was investigated using ammonium chloride (NH4Cl), monensin and nigericin. Impact of lysosomal sequestration on clarithromycin accumulation kinetics was investigated. Results Both cell-to-medium concentration ratio (Kp) and uptake clearance (CLuptake) ranged > 400-fold for the drugs investigated. The greatest Kp was observed for imipramine (391) and clarithromycin (82), in contrast to no accumulation seen for terbutaline. A concentration-dependent accumulation was evident for the basic drugs investigated. Imipramine and clarithromycin Kp and CLuptake were reduced by 59–85% in the presence of NH4Cl and monensin/nigericin, indicating lysosomal accumulation, whereas lysosomal sequestration was not pronounced for the other 8 respiratory drugs. Clarithromycin uptake rate was altered by NH4Cl, highlighting the impact of subcellular distribution on accumulation kinetics. Conclusions This study provides novel evidence of the utility of NR8383 for investigating accumulation and lysosomal sequestration of respiratory drugs in AMs. Electronic supplementary material The online version of this article (doi:10.1007/s11095-015-1753-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Graham Somers
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
21
|
Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther Deliv 2015; 5:1143-63. [PMID: 25418271 DOI: 10.4155/tde.14.67] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One of the major hurdles in developing therapeutic agents is the difficulty in delivering drugs through the intestinal mucosa and blood-brain barriers (BBB). The goal here is to describe the general structures of the biological barriers and the strategies to enhance drug delivery across these barriers. Prodrug methods used to improve drug penetration via the transcellular pathway have been successfully developed, and some prodrugs have been used to treat patients. The use of transporters to improve absorption of some drugs (e.g., antiviral agents) has also been successful in treating patients. Other methods, including blocking the efflux pumps to improve transcellular delivery, and modulation of cell-cell adhesion in the intercellular junctions to improve paracellular delivery across biological barriers, are still in the investigational stage.
Collapse
|
22
|
Mechanistic Understanding of Brain Drug Disposition to Optimize the Selection of Potential Neurotherapeutics in Drug Discovery. Pharm Res 2014; 31:2203-19. [DOI: 10.1007/s11095-014-1319-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
|
23
|
Côrte-Real L, Matos AP, Alho I, Morais TS, Tomaz AI, Garcia MH, Santos I, Bicho MP, Marques F. Cellular uptake mechanisms of an antitumor ruthenium compound: the endosomal/lysosomal system as a target for anticancer metal-based drugs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1122-30. [PMID: 23790186 DOI: 10.1017/s143192761300175x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previous studies have described promising antitumor activity of an organometallic Ru(II) complex, η⁵-cyclopentadienyl(2,2'-bipyridyl)(triphenylphosphane) Ruthenium(II) triflate ([η⁵-C₅H₅)Ru(2,2'-bipyridyl)(PPh₃)][CF₃SO₃]) herein designated as TM34. Its broad spectrum of activity against a panel of human tumor cell lines and high antiproliferative efficiency prompted us to focus on its mode of action. We present herein results obtained with two human tumor cell lines A2780 and MDAMB231 on the compound distribution within the cell, the mechanism of its activity, and its cellular targets. The prospective metallodrug TM34 revealed: (a) fast antiproliferative effects even at short incubation times for both cell lines; (b) preferential localization at the cell membrane and cytosol; (c) cellular activity by a temperature-dependent process, probably macropinocytosis; (d) inhibition of a lysosomal enzyme, acid phosphatase, in a dose-dependent mode; and (e) disruption and vesiculation of the Golgi apparatus, which suggest the involvement of the endosomal/lysosomal system in its mode of action. These results are essential to elucidate the basis for the cytotoxic activity and mechanism of action of this Ru(II)(η⁵-cyclopentadienyl) complex.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Superior Técnico, Polo de Loures-Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mateus A, Matsson P, Artursson P. Rapid Measurement of Intracellular Unbound Drug Concentrations. Mol Pharm 2013; 10:2467-78. [DOI: 10.1021/mp4000822] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- André Mateus
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Research Institute for Medicines
and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University
of Lisbon, 1649-003 Lisbon, Portugal
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Uppsala University Drug Optimization
and Pharmaceutical Profiling Platform (UDOPP)—a node of the
Chemical Biology Consortium Sweden (CBCS), Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Uppsala University Drug Optimization
and Pharmaceutical Profiling Platform (UDOPP)—a node of the
Chemical Biology Consortium Sweden (CBCS), Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
25
|
Kazmi F, Hensley T, Pope C, Funk RS, Loewen GJ, Buckley DB, Parkinson A. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab Dispos 2013; 41:897-905. [PMID: 23378628 PMCID: PMC3608459 DOI: 10.1124/dmd.112.050054] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/01/2013] [Indexed: 11/22/2022] Open
Abstract
Lipophilic (logP > 1) and amphiphilic drugs (also known as cationic amphiphilic drugs) with ionizable amines (pKa > 6) can accumulate in lysosomes, a process known as lysosomal trapping. This process contributes to presystemic extraction by lysosome-rich organs (such as liver and lung), which, together with the binding of lipophilic amines to phospholipids, contributes to the large volume of distribution characteristic of numerous cardiovascular and central nervous system drugs. Accumulation of lipophilic amines in lysosomes has been implicated as a cause of phospholipidosis. Furthermore, elevated levels of lipophilic amines in lysosomes can lead to high organ-to-blood ratios of drugs that can be mistaken for active drug transport. In the present study, we describe an in vitro fluorescence-based method (using the lysosome-specific probe LysoTracker Red) to identify lysosomotropic agents in immortalized hepatocytes (Fa2N-4 cells). A diverse set of compounds with various physicochemical properties were tested, such as acids, bases, and zwitterions. In addition, the partitioning of the nonlysosomotropic atorvastatin (an anion) and the lysosomotropics propranolol and imipramine (cations) were quantified in Fa2N-4 cells in the presence or absence of various lysosomotropic or nonlysosomotropic agents and inhibitors of lysosomal sequestration (NH4Cl, nigericin, and monensin). Cellular partitioning of propranolol and imipramine was markedly reduced (by at least 40%) by NH4Cl, nigericin, or monensin. Lysosomotropic drugs also inhibited the partitioning of propranolol by at least 50%, with imipramine partitioning affected to a lesser degree. This study demonstrates the usefulness of immortalized hepatocytes (Fa2N-4 cells) for determining the lysosomal sequestration of lipophilic amines.
Collapse
|