1
|
Triarico S, Rivetti S, Capozza MA, Romano A, Maurizi P, Mastrangelo S, Attinà G, Ruggiero A. Transplacental Passage and Fetal Effects of Antineoplastic Treatment during Pregnancy. Cancers (Basel) 2022; 14:3103. [PMID: 35804875 PMCID: PMC9264939 DOI: 10.3390/cancers14133103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence of PAC is relatively infrequent among pregnant women. However, it has gradually increased in recent years, becoming a challenging area for clinicians that should take into account in the same way maternal benefits and fetal potential risks correlated to the antineoplastic treatment. None of the antineoplastic drugs is completely risk-free during the pregnancy, the timing of exposure and transplacental transfer properties influence the toxicity of the fetus. Despite the lack of guidelines about the management of PAC, several studies have described the use and the potential fetal and neonatal adverse events of antineoplastic drugs during pregnancy. We provide a review of the available literature about the transplacental passage and fetal effects of chemotherapy and targeted agents, to guide the clinicians in the most appropriate choices for the management of PAC.
Collapse
Affiliation(s)
- Silvia Triarico
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (S.T.); (S.R.); (A.R.); (P.M.); (S.M.); (G.A.)
| | - Serena Rivetti
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (S.T.); (S.R.); (A.R.); (P.M.); (S.M.); (G.A.)
- Scuola di Specializzazione in Pediatria, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | - Alberto Romano
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (S.T.); (S.R.); (A.R.); (P.M.); (S.M.); (G.A.)
| | - Palma Maurizi
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (S.T.); (S.R.); (A.R.); (P.M.); (S.M.); (G.A.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Stefano Mastrangelo
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (S.T.); (S.R.); (A.R.); (P.M.); (S.M.); (G.A.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giorgio Attinà
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (S.T.); (S.R.); (A.R.); (P.M.); (S.M.); (G.A.)
| | - Antonio Ruggiero
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; (S.T.); (S.R.); (A.R.); (P.M.); (S.M.); (G.A.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
2
|
Figueroa-Espada CG, Hofbauer S, Mitchell MJ, Riley RS. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Deliv Rev 2020; 160:244-261. [PMID: 32956719 DOI: 10.1016/j.addr.2020.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
A major challenge to treating diseases during pregnancy is that small molecule therapeutics are transported through the placenta and incur toxicities to the developing fetus. The placenta is responsible for providing nutrients, removing waste, and protecting the fetus from toxic substances. Thus, the placenta acts as a biological barrier between the mother and fetus that can be exploited for drug delivery. Nanoparticle technologies provide the opportunity for safe drug delivery during pregnancy by controlling how therapeutics interact with the placenta. In this Review, we present nanoparticle drug delivery technologies specifically designed to exploit the placenta as a biological barrier to treat maternal, placental, or fetal diseases exclusively, while minimizing off-target toxicities. Further, we discuss opportunities, challenges, and future directions for implementing drug delivery technologies during pregnancy.
Collapse
|
3
|
Framarino-dei-Malatesta M, Sammartino P, Napoli A. Does anthracycline-based chemotherapy in pregnant women with cancer offer safe cardiac and neurodevelopmental outcomes for the developing fetus? BMC Cancer 2017; 17:777. [PMID: 29162041 PMCID: PMC5696726 DOI: 10.1186/s12885-017-3772-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer treatment during pregnancy is a growing problem especially now that women delay childbearing. Systemic treatment of these malignancies during pregnancy centers mainly on the anticancer drugs anthracyclines, widely used in treating hematological and breast cancer during pregnancy and sometimes associated with early and late toxicity for the fetus. Owing to concern about their cardiac and neurodevelopmental toxicity more information is needed on which anthracycline to prefer and whether they can safely guarantee a cardiotoxicity-free outcome in the fetus. DISCUSSION The major research findings underline anthracycline-induced dose-dependent effects, including cardiotoxicity, many avoidable. Partly because the placenta acts mainly as a barrier, research findings indicate low transplacental anthracycline transfer. Anthracycline-induced teratogenicity depends closely on when patients receive chemotherapy. Anthracycline cardiac toxicity may depend on the association with drugs that inhibit or induce placental P-glycoprotein (P-gp). P-gp-induced drug interactions may alter placental P-gp barrier function and subsequently change fetal exposure. Though many anthracyclines have acceptable safety profiles clinical studies suggest giving idarubicin with special caution. Patients and doctors who care for pregnant women should whenever possible avoid prematurity and hence reduce prematurity-induced medical complications at birth and in the long-term. Information is lacking on long-term anthracycline-induced effects. CONCLUSION Pregnant women receiving anthracycline-based chemotherapy should undergo regular, state-of-the-art diagnostic imaging to detect fetal drug-induced cardiac damage early, and allow alternative therapeutic options. Recognizing drug-induced interactions and understanding the most vulnerable fetuses will help in choosing tailored therapy. Future research on placental transport, blood-brain barrier drug passage and pharmacokinetics will improve the way we manage these difficult-to-treat patients and their fetuses.
Collapse
Affiliation(s)
| | - Paolo Sammartino
- Department of Surgery “Pietro Valdoni”, University Sapienza Rome, Viale del Policlinico, 155 00161 Rome, Italy
| | - Angela Napoli
- Department of Clinical and Molecular Medicine, University Sapienza Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
- Italian Diabetic and Pregnancy Study Group, Rome, Italy
| |
Collapse
|
4
|
Vercruysse DCM, Deprez S, Sunaert S, Van Calsteren K, Amant F. Effects of prenatal exposure to cancer treatment on neurocognitive development, a review. Neurotoxicology 2016; 54:11-21. [PMID: 26952827 DOI: 10.1016/j.neuro.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/28/2016] [Accepted: 02/28/2016] [Indexed: 01/09/2023]
Abstract
Due to the increasing incidence of cancer during pregnancy, the need to better understand long-term outcome after prenatal exposure to chemo- and/or radiotherapy has become more urgent. This manuscript focuses on the neurocognitive development after prenatal exposure to cancer treatment. We will review possible pathways for brain damage that could explain the subtle changes in neurocognition and behavior found after in utero exposure to cancer treatment. Contrary to radiation, which has a direct effect on the developing nervous system, chemotherapy has to pass the placental and blood brain barrier to reach the fetal brain. However, there are also indirect effects such as inflammation and oxidative stress. Furthermore, the indirect effects of the cancer itself and its treatment, e.g., poor maternal nutrition and high maternal stress, as well as prematurity, can be related to cognitive impairment. Although the available evidence suggests that cancer treatment can be administered during pregnancy without jeopardizing the fetal chances, larger numbers and longer follow up of these children are needed.
Collapse
Affiliation(s)
- Dorothée C-M Vercruysse
- KU Leuven-University of Leuven, Department of Oncology, University Hospitals Leuven, Department of Obstetrics and Gynecology, Gynecological Oncology, Herestraat 49, B-3000 Leuven, Belgium.
| | - Sabine Deprez
- KU Leuven-University of Leuven, Department of Radiology, University Hospitals Leuven, Department of Radiology, Herestraat 49, B-3000 Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven-University of Leuven, Department of Radiology, University Hospitals Leuven, Department of Radiology, Herestraat 49, B-3000 Leuven, Belgium.
| | - Kristel Van Calsteren
- KU Leuven-University of Leuven, Department of Obstetrics and Gynecology, University Hospitals Leuven, Department of Obstetrics and Gynecology, Herestraat 49, B-3000 Leuven, Belgium.
| | - Frederic Amant
- KU Leuven-University of Leuven, Department of Oncology, B-3000 Leuven, Belgium; The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|