1
|
Al-Naimi MS, Abu-Raghif AR, Mansoor AFA, Fawzi HA. Isofraxidin Attenuates Lipopolysaccharide-Induced Cytokine Release in Mice Lung and Liver Tissues via Inhibiting Inflammation and Oxidative Stress. Biomedicines 2025; 13:653. [PMID: 40149629 PMCID: PMC11940160 DOI: 10.3390/biomedicines13030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Isofraxidin is a hydroxylcoumarin derived from herbal Fraxinus and Eleutherococcus. It has been shown that isofraxidin has antioxidant, anti-inflammatory, anti-diabetic, and anti-lipidemic effects. The study aimed to examine the therapeutic effects of isofraxidin with and without methylprednisolone to ameliorate lipopolysaccharide (LPS)-induced cytokine-releasing syndrome. Methods: The study comprised two phases: preventive and therapeutic. In all the experiments that involved LPS induction, a single dose of LPS (5 mg/kg) was used. The preventive phase involved the administration of the agents before LPS induction, in which 50 mg/kg of methylprednisolone, 15 mg/kg of isofraxidin, or a combination of 7.5 mg/kg of isofraxidin plus 25 mg/kg methylprednisolone were given daily for 3 days before induction. The therapeutic phase involved the administration of the following agents after LPS induction: 50 mg/kg methylprednisolone, 15 mg/kg of isofraxidin, or a combination of 7.5 mg/kg of isofraxidin plus 25 mg/kg methylprednisolone were given once daily was given for 7 days. Results: Isofraxidin treatment with or without methylprednisolone ameliorates LPS-induced inflammatory and oxidative stress damage in mice; it reduces the inflammatory (IL-6, TNF-α, IL-1β, IL-8, Malondialdehyde, and IFN-γ) and oxidative stress markers. Additionally, isofraxidin treatment with or without methylprednisolone prevented liver and lung tissue damage induced by LPS. Conclusions: Isofraxidin exhibited preventive and therapeutic properties against lipopolysaccharide-induced cytokine storms in mice via anti-inflammatory and antioxidant pathways, and its combination with methylprednisolone demonstrated synergistic outcomes.
Collapse
Affiliation(s)
- Marwa Salih Al-Naimi
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad 10006, Iraq;
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Farahidi University, Baghdad 00965, Iraq
| | - Ahmed R. Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad 10006, Iraq;
| | - Ahmed F. Abed Mansoor
- Department of Pharmacology and Toxicology, College of Pharmacy, National University of Science and Technology, Nasiriyah 64001, Iraq;
| | - Hayder Adnan Fawzi
- Department of Clinical Pharmacy, College of Pharmacy, AlMustafa University, Baghdad 10064, Iraq;
| |
Collapse
|
2
|
Nelemans LC, Melo VA, Buzgo M, Bremer E, Simaite A. Antibody desolvation with sodium chloride and acetonitrile generates bioactive protein nanoparticles. PLoS One 2024; 19:e0300416. [PMID: 38483950 PMCID: PMC10939210 DOI: 10.1371/journal.pone.0300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
About 30% of the FDA approved drugs in 2021 were protein-based therapeutics. However, therapeutic proteins can be unstable and rapidly eliminated from the blood, compared to conventional drugs. Furthermore, on-target but off-tumor protein binding can lead to off-tumor toxicity, lowering the maximum tolerated dose. Thus, for effective treatment therapeutic proteins often require continuous or frequent administration. To improve protein stability, delivery and release, proteins can be encapsulated inside drug delivery systems. These drug delivery systems protect the protein from degradation during (targeted) transport, prevent premature release and allow for long-term, sustained release. However, thus far achieving high protein loading in drug delivery systems remains challenging. Here, the use of protein desolvation with acetonitrile as an intermediate step to concentrate monoclonal antibodies for use in drug delivery systems is reported. Specifically, trastuzumab, daratumumab and atezolizumab were desolvated with high yield (∼90%) into protein nanoparticles below 100 nm with a low polydispersity index (<0.2). Their size could be controlled by the addition of low concentrations of sodium chloride between 0.5 and 2 mM. Protein particles could be redissolved in aqueous solutions and redissolved antibodies retained their binding activity as evaluated in cell binding assays and exemplified for trastuzumab in an ELISA.
Collapse
Affiliation(s)
- Levi Collin Nelemans
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Vinicio Alejandro Melo
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Matej Buzgo
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Aiva Simaite
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
| |
Collapse
|
3
|
Gust J, Ponce R, Liles WC, Garden GA, Turtle CJ. Cytokines in CAR T Cell-Associated Neurotoxicity. Front Immunol 2020; 11:577027. [PMID: 33391257 PMCID: PMC7772425 DOI: 10.3389/fimmu.2020.577027] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells provide new therapeutic options for patients with relapsed/refractory hematologic malignancies. However, neurotoxicity is a frequent, and potentially fatal, complication. The spectrum of manifestations ranges from delirium and language dysfunction to seizures, coma, and fatal cerebral edema. This novel syndrome has been designated immune effector cell-associated neurotoxicity syndrome (ICANS). In this review, we draw an arc from our current understanding of how systemic and potentially local cytokine release act on the CNS, toward possible preventive and therapeutic approaches. We systematically review reported correlations of secreted inflammatory mediators in the serum/plasma and cerebrospinal fluid with the risk of ICANS in patients receiving CAR T cell therapy. Possible pathophysiologic impacts on the CNS are covered in detail for the most promising candidate cytokines, including IL-1, IL-6, IL-15, and GM-CSF. To provide insight into possible final common pathways of CNS inflammation, we place ICANS into the context of other systemic inflammatory conditions that are associated with neurologic dysfunction, including sepsis-associated encephalopathy, cerebral malaria, thrombotic microangiopathy, CNS infections, and hepatic encephalopathy. We then review in detail what is known about systemic cytokine interaction with components of the neurovascular unit, including endothelial cells, pericytes, and astrocytes, and how microglia and neurons respond to systemic inflammatory challenges. Current therapeutic approaches, including corticosteroids and blockade of IL-1 and IL-6 signaling, are reviewed in the context of what is known about the role of cytokines in ICANS. Throughout, we point out gaps in knowledge and possible new approaches for the investigation of the mechanism, prevention, and treatment of ICANS.
Collapse
Affiliation(s)
- Juliane Gust
- Department of Neurology, University of Washington, Seattle, WA, United States
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | | | - W. Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Gwenn A. Garden
- Department of Neurology, University of North Carolina, Chapel Hill, NC, United States
| | - Cameron J. Turtle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
4
|
Vessillier S, Fort M, O'Donnell L, Hinton H, Nadwodny K, Piccotti J, Rigsby P, Staflin K, Stebbings R, Mekala D, Willingham A, Wolf B. Development of the first reference antibody panel for qualification and validation of cytokine release assay platforms - Report of an international collaborative study. Cytokine X 2020; 2:100042. [PMID: 33458650 DOI: 10.1016/j.cytox.2020.100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022] Open
Abstract
Immunomodulatory therapeutics such as monoclonal antibodies (mAb) carry an inherent risk of undesired immune reactions. One such risk is cytokine release syndrome (CRS), a rapid systemic inflammatory response characterized by the secretion of pro-inflammatory cytokines from immune cells. It is crucial for patient safety to correctly identify potential risk of CRS prior to first-in-human dose administration. For this purpose, a variety of in vitro cytokine release assays (CRA) are routinely used as part of the preclinical safety assessment of novel therapeutic mAbs. One of the challenges for the development and comparison of CRA performance is the lack of availability of standard positive and negative control mAbs for use in assay qualification. To address this issue, the National Institute for Biological Standards and Control (NIBSC) developed a reference panel of lyophilised mAbs known to induce CRS in the clinic: human anti-CD52, mouse anti-CD3 and human superagonistic (SA) anti-CD28 mAb manufactured according to the respective published sequences of Campath-1H® (alemtuzumab, IgG1) , Orthoclone OKT-3® (muromonab, IgG2a) and TGN1412 (theralizumab, IgG4), as well as three isotype matched negative controls (human IgG1, mouse IgG2a and human IgG4, respectively). The relative capacity of these control mAbs to stimulate the release of IFN-γ, IL-2, TNF-α and IL-6 in vitro was evaluated in eleven laboratories in an international collaborative study mediated through the HESI Immuno-safety Technical Committee Cytokine Release Assay Working Group. Participants tested the NIBSC mAbs in a variety of CRA platforms established at each institution. This paper presents the results from the centralised cytokine quantification on all the plasma/supernatants corresponding to the stimulation of immune cells in the different CRA platforms by a single concentration of each mAb. Each positive control mAb induced significant cytokine release in most of the tested CRA platforms. There was a high inter-laboratory variability in the levels of cytokines produced, but similar patterns of response were observed across laboratories that replicated the cytokine release patterns previously published for the respective clinical therapeutic mAbs. Therefore, the positive and negative mAbs are suitable as a reference panel for the qualification and validation of CRAs, comparison of different CRA platforms (e.g. solid vs aqueous phase), and intra- and inter-laboratory comparison of CRA performance. Thus, the use of this panel of positive and negative control mAbs will increase the confidence in the robustness of a CRA platform to identify a potential CRS risk for novel immunomodulatory therapeutic candidates.
Collapse
Affiliation(s)
- Sandrine Vessillier
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Madeline Fort
- Amgen Inc., 1120 Veterans Blvd, South San Francisco CA 94080, USA
| | - Lynn O'Donnell
- Drug Safety Research and Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Heather Hinton
- Roche Innovation Center, Basel, Switzerland. Pharmaceutical Sciences Switzerland
| | - Kimberly Nadwodny
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Joseph Piccotti
- Bristol-Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, USA
| | - Peter Rigsby
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Karin Staflin
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Richard Stebbings
- Oncology Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Divya Mekala
- Janssen R&D, 1400 McKean Road, Spring House, PA 19477, USA
| | - Aarron Willingham
- MRL, Merck & Co., Inc., 213 E Grand Ave, South San Francisco, CA 94080, USA
| | - Babette Wolf
- Novartis Institutes for BioMedical Research, Klybeckstrasse 141, Basel CH-4002, Switzerland
| | | |
Collapse
|
5
|
Yang F, Kosten TR. Psychopharmacology: neuroimmune signaling in psychiatric disease-developing vaccines against abused drugs using toll-like receptor agonists. Psychopharmacology (Berl) 2019; 236:2899-2907. [PMID: 30726515 DOI: 10.1007/s00213-019-5176-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
RATIONALE Since substance use disorders have few or no effective pharmacotherapies, researchers have developed vaccines as immune-therapies against nicotine, cocaine, methamphetamine, and opioids including fentanyl. OBJECTIVES We focus on enhancing antibody (AB) production through stimulation of toll-like receptor-5 (TLR5) during active vaccination. The stimulating adjuvant is Entolimod, a novel protein derivative of flagellin. We review the molecular and cellular mechanisms underlying Entolimod's actions on TLR5. RESULTS Entolimod shows excellent efficacy for increasing AB levels to levels well beyond those produced by anti-addiction vaccines alone in animal models and humans. These ABs also significantly block the behavioral effects of the targeted drug of abuse. The TLR5 stimulation involves a wide range of immune cell types such as dendritic, antigen presenting, T and B cells. Entolimod binding to TLR5 initiates an intracellular signaling cascade that stimulates cytokine production of tumor necrosis factor and two interleukins (IL-6 and IL-12). While cytokine release can be catastrophic in cytokine storm, Entolimod produces a modulated release with few side effects even at doses 30 times greater than doses needed in these vaccine studies. Entolimod has markedly increased AB responses to all of our anti-addiction vaccines in rodent models, and in normal humans. CONCLUSIONS Entolimod and TLR5 stimulation has broad application to vaccines and potentially to other psychiatric disorders like depression, which has critical inflammatory contributions that Entolimod could reduce.
Collapse
Affiliation(s)
- Fang Yang
- Department of Psychiatry, Baylor College of Medicine, 1977 Butler Blvd, Suite E4.207, Houston, TX, 77030, USA
| | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, 1977 Butler Blvd, Suite E4.207, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Batista-Duharte A, Martínez DT, Carlos IZ. Efficacy and safety of immunological adjuvants. Where is the cut-off? Biomed Pharmacother 2018; 105:616-624. [DOI: 10.1016/j.biopha.2018.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
|
7
|
Herzyk DJ, Haggerty HG. Cancer Immunotherapy: Factors Important for the Evaluation of Safety in Nonclinical Studies. AAPS JOURNAL 2018; 20:28. [DOI: 10.1208/s12248-017-0184-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
|
8
|
Frazier KS, Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW, Louden C, Scicchitano MS, Weaver JL, Zabka TS. Scientific and Regulatory Policy Committee Points-to-consider Paper*. Toxicol Pathol 2015; 43:915-34. [DOI: 10.1177/0192623315570340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. Although DIVI in laboratory animal species has been well characterized for vasoactive small molecules, there is little available information regarding DIVI associated with biotherapeutics such as peptides/proteins or antibodies. Because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans and the lack of robust biomarkers of DIVI, preclinical DIVI findings can cause considerable delays in or even halt development of promising new drugs. This review discusses standard terminology, characteristics, and mechanisms of DIVI associated with biotherapeutics. Guidance and points to consider for the toxicologist and pathologist facing preclinical cases of biotherapeutic-related DIVI are outlined, and examples of regulatory feedback for each of the mechanistic types of DIVI are included to provide insight into risk assessment.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael W. Leach
- Pfizer—Drug Safety Research and Development, Andover, Massachusetts, USA
| | | | | | | | | |
Collapse
|
9
|
Cauvin AJ, Peters C, Brennan F. Advantages and Limitations of Commonly Used Nonhuman Primate Species in Research and Development of Biopharmaceuticals. THE NONHUMAN PRIMATE IN NONCLINICAL DRUG DEVELOPMENT AND SAFETY ASSESSMENT 2015. [PMCID: PMC7149394 DOI: 10.1016/b978-0-12-417144-2.00019-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonhuman primates (NHPs) have been used extensively during the past four decades for research and nonclinical development because they are close to humans in terms of genetics, anatomy, physiology, and immunology. They have been widely used in the development of infection models, leading to the generation of vaccines and drugs, as well as in the nonclinical pharmacologic and toxicologic assessment of biopharmaceuticals, especially in the fields of immunotherapy and oncology, despite the constant pressure to move to lower species. In many cases, NHPs are the only species that allows a correct risk assessment for humans. Nevertheless, limitations inherent to each species have to be considered before an investigation. This chapter shines some light on the respective interests and limitations of using cynomolgus monkeys, rhesus monkeys, and marmosets in medical research and nonclinical development, with a specific focus on reproduction and immunology.
Collapse
Affiliation(s)
- Annick J. Cauvin
- UCB Biopharma, New Medicine, Non-Clinical Development, Braine L’Alleud, Belgium
| | - Christopher Peters
- UCB Biopharma, New Medicine, Non-Clinical Development, Braine L’Alleud, Belgium
| | - Frank Brennan
- UCB Pharma, New Medicines, Non-Clinical Development, Slough, UK
| |
Collapse
|
10
|
Batista-Duharte A, Lastre M, Pérez O. Adyuvantes inmunológicos. Determinantes en el balance eficacia-toxicidad de las vacunas contemporáneas. Enferm Infecc Microbiol Clin 2014; 32:106-14. [DOI: 10.1016/j.eimc.2012.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 02/05/2023]
|
11
|
Everds NE, Tarrant JM. Unexpected hematologic effects of biotherapeutics in nonclinical species and in humans. Toxicol Pathol 2013; 41:280-302. [PMID: 23471185 DOI: 10.1177/0192623312467400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotherapeutics are expanding the arsenal of therapeutics available for treating and preventing disease. Although initially thought to have limited side effects due to the specificity of their binding, these drugs have now been shown to have potential for adverse drug reactions including effects on peripheral blood cell counts or function. Hematotoxicity caused by a biotherapeutic can be directly related to the activity of the biotherapeutic or can be indirect and due to autoimmunity, biological cascades, antidrug antibodies, or other immune system responses. Biotherapeutics can cause hematotoxicity primarily as a result of cellular activation, cytotoxicity, drug-dependent and independent immune responses, and sequelae from initiating cytokine and complement cascades. The underlying pathogenesis of biotherapeutic-induced hematotoxicity often is poorly understood. Nonclinical studies have generally predicted clinical hematotoxicity for recombinant cytokines and growth factors. However, most hematologic liabilities of biotherapeutics are not based on drug class but are species specific, immune-mediated, and of low incidence. Despite the potential for unexpected hematologic toxicity, the risk-benefit profile of most biotherapeutics is favorable; hematologic effects are readily monitorable and managed by dose modification, drug withdrawal, and/or therapeutic intervention. This article reviews examples of biotherapeutics that have unexpected hematotoxicity in nonclinical or clinical studies.
Collapse
|
12
|
Kashiwagi Y, Miyata A, Kumagai T, Maehara K, Suzuki E, Nagai T, Ozaki T, Nishimura N, Okada K, Kawashima H, Nakayama T. Production of inflammatory cytokines in response to diphtheria-pertussis-tetanus (DPT), haemophilus influenzae type b (Hib), and 7-valent pneumococcal (PCV7) vaccines. Hum Vaccin Immunother 2013; 10:677-85. [PMID: 24589970 PMCID: PMC4130255 DOI: 10.4161/hv.27264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Haemophilus influenzae type b (Hib) and 7-valent pneumococcal (PCV7) vaccines both became recommended in Japan in 2010. In this study, cytokine production was investigated in peripheral blood mononuclear cells (PBMCs) cultures stimulated with diphtheria and tetanus toxoids combined with acellular pertussis vaccine (DPT), Hib, and PCV7 separately or concurrent different combinations, all as final off-the-shelf vaccines without the individual vaccine components as controls. Higher IL-1β levels were produced when cultures were stimulated with PCV than with DPT or Hib, and the concurrent stimulation including PCV7 enhanced the production of IL-1β. Although Hib induced higher levels of IL-6, no significant difference was observed in IL-6 production with the concurrent stimulation. The concurrent stimulation with Hib/PCV7 and DPT/Hib/PCV7 produced higher levels of TNF-α and human G-CSF. Cytokine profiles were examined in serum samples obtained from 61 vaccine recipients with febrile reactions and 18 recipients without febrile illness within 24 h of vaccination. No significant difference was observed in cytokine levels of IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, MIP-1, TNF-α, and prostaglandin E2 (PGE2) in sera between the two groups. However, significantly higher levels of human G-CSF were observed in recipients with febrile illness than in those without febrile reactions. Further investigations of the significance of elevated serum G-CSF levels are required in vaccine recipients with febrile illness.
Collapse
Affiliation(s)
- Yasuyo Kashiwagi
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Tokyo, Japan; Department of Pediatrics; Tokyo Medical University; Tokyo, Japan
| | - Akiko Miyata
- Miyata Pediatric Clinic; Tachikawa; Tokyo, Japan
| | | | | | - Eitarou Suzuki
- Suzuki Pediatric Clinic; Ube, Yamaguchi Prefecture, Japan
| | - Takao Nagai
- Nagai Pediatric Clinic; Takamatsu, Kagawa Prefecture, Japan
| | - Takao Ozaki
- Department of Pediatrics; Konan Kosei Hospital; Konan; Aichi Prefecture, Japan
| | - Naoko Nishimura
- Department of Pediatrics; Konan Kosei Hospital; Konan; Aichi Prefecture, Japan
| | - Kenji Okada
- Department of Pediatrics; National Fukuoka Hospital; Fukuoka, Japan
| | | | - Tetsuo Nakayama
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Tokyo, Japan
| |
Collapse
|
13
|
Monticello T, Bussiere J. Nonclinical Safety Evaluation of Drugs. Toxicol Pathol 2013. [DOI: 10.1201/b13783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Singh SK, Cousens LP, Alvarez D, Mahajan PB. Determinants of immunogenic response to protein therapeutics. Biologicals 2012; 40:364-8. [DOI: 10.1016/j.biologicals.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 11/27/2022] Open
|
15
|
Lebrec HN. Regulatory forum opinion piece*: immunotoxicology assessments in nonhuman primates--challenges and opportunities. Toxicol Pathol 2012; 41:548-51. [PMID: 22886347 DOI: 10.1177/0192623312455526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immune system has been recognized for decades as a potential "target organ" of toxicity. Immune system activation can result in cytokine release resulting in severe systemic toxicity. Immunosuppression can result in impaired host defense and an increase in opportunistic infection, reemergence of latent infection, poor responses to vaccination, or increased risk of certain cancers. Several regulatory documents have addressed various aspects of immunotoxicity assessments. Nonhuman primates (NHPs) and in particular macaques are often the only relevant species for biotechnology-derived investigational new drugs based on cross-reactivity with human and NHP targets. This article reviews the challenges and opportunities associated with monitoring immune function in NHPs in the context of regulatory expectations. The article emphasizes how a comprehensive assessment of immunotoxicity remains a challenge due to interanimal variability associated with certain parameters (e.g., T-dependent antibody response)and it identifies gaps, such as the stage of development of certain assays (e.g., cytotoxic T-cell function). Despite these challenges, a thorough assessment of target biology-driven theoretical risks, in combination with proper integration of all information from the standard toxicology studies, and the refinement of certain assays should enable proper risk assessment. To this effect, emphasis should be placed on leveraging predictive in vitro assays using human cells.
Collapse
|
16
|
Dhir V, Fort M, Mahmood A, Higbee R, Warren W, Narayanan P, Wittman V. A predictive biomimetic model of cytokine release induced by TGN1412 and other therapeutic monoclonal antibodies. J Immunotoxicol 2011; 9:34-42. [PMID: 22074378 DOI: 10.3109/1547691x.2011.613419] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMC) are routinely used in vitro to detect cytokine secretion as part of preclinical screens to delineate agonistic and antagonistic action of therapeutic monoclonal antibodies (mAbs). Preclinical value of standard human PBMC assays to detect cytokine release syndrome (CRS) has been questioned, as they did not predict the "cytokine storm" that occurred when healthy human volunteers were given a CD28-specific super-agonist mAb, TGN1412. In this article, we describe a three-dimensional biomimetic vascular test-bed that can be used as a more physiologically relevant assay for testing therapeutic Abs. For developing such a system, we used TGN1412 as a model mAb. We tested soluble TGN1412 on various combinations of human blood components in a module containing endothelial cells grown on a collagen scaffold and measured cytokine release using multiplex array. Our system, consisting of whole leukocytes, endothelial cells, and 100% autologous platelet-poor plasma (PPP) consistently produced proinflammatory cytokines in response to soluble TGN1412. In addition, other mAb therapeutics known to induce CRS or first infusion reactions, such as OKT3, Campath-1H, or Herceptin, generated cytokine profiles in our model system consistent with their in vivo responses. As a negative control we tested the non-CRS mAbs Avastin and Remicade and found little difference between these mAbs and the placebo control. Our data indicate that this novel assay may have preclinical value for predicting the potential of CRS for mAb therapeutics.
Collapse
Affiliation(s)
- Vipra Dhir
- Sanofi Pasteur, VaxDesign Campus, Orlando, FL 32826, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ponce RA. Safety assessment of immunomodulatory biologics: The promise and challenges of regulatory T-cell modulation. J Immunotoxicol 2011; 8:389-97. [DOI: 10.3109/1547691x.2011.603390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol Lett 2011; 203:97-105. [DOI: 10.1016/j.toxlet.2011.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 01/05/2023]
|
19
|
Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci 2010; 100:354-87. [PMID: 20740683 DOI: 10.1002/jps.22276] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 12/12/2022]
Abstract
All protein therapeutics have the potential to be immunogenic. Several factors, including patient characteristics, disease state, and the therapy itself, influence the generation of an immune response. Product-related factors such as the molecule design, the expression system, post-translational modifications, impurities, contaminants, formulation and excipients, container, closure, as well as degradation products are all implicated. However, a critical examination of the available data shows that clear unequivocal evidence for the impact of these latter factors on clinical immunogenicity is lacking. No report could be found that clearly deconvolutes the clinical impact of the product attributes on patient susceptibility. Aggregation carries the greatest concern as a risk factor for immunogenicity, but the impact of aggregates is likely to depend on their structure as well as on the functionality (e.g., immunostimulatory or immunomodulatory) of the therapeutic. Preclinical studies are not yet capable of assessing the clinically relevant immunogenicity potential of these product-related factors. Simply addressing these risk factors as part of product development will not eliminate immunogenicity. Minimization of immunogenicity has to begin at the molecule design stage by reducing or eliminating antigenic epitopes and building in favorable physical and chemical properties.
Collapse
Affiliation(s)
- Satish Kumar Singh
- Pfizer, Inc., BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Chesterfield, Missouri 63017, USA.
| |
Collapse
|
20
|
Tarrant JM. Blood cytokines as biomarkers of in vivo toxicity in preclinical safety assessment: considerations for their use. Toxicol Sci 2010; 117:4-16. [PMID: 20447938 PMCID: PMC2923281 DOI: 10.1093/toxsci/kfq134] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the drive to develop drugs with well-characterized and clinically monitorable safety profiles, there is incentive to expand the repertoire of safety biomarkers for toxicities without routine markers or premonitory detection. Biomarkers in blood are pursued because of specimen accessibility, opportunity for serial monitoring, quantitative measurement, and the availability of assay platforms. Cytokines, chemokines, and growth factors (here referred to collectively as cytokines) show robust modulation in proximal events of inflammation, immune response, and repair. These are key general processes in many toxicities; therefore, cytokines are commonly identified during biomarker discovery studies. In addition, multiplexed cytokine immunoassays are easily applied to biomarker discovery and routine toxicity studies to measure blood cytokines. However, cytokines pose several challenges as safety biomarkers because of a short serum half-life; low to undetectable baseline levels; lack of tissue-specific or toxicity-specific expression; complexities related to cytokine expression with multiorgan involvement; and species, strain, and interindividual differences. Additional challenges to their application are caused by analytical, methodological, and study design-related variables. A final consideration is the strength of the relationship between changes in cytokine levels and the development of phenotypic or functional manifestations of toxicity. These factors should inform the integrated judgment-based qualification of novel biomarkers in preclinical, and potentially clinical, risk assessment. The dearth of robust, predictive cytokine biomarkers for specific toxicities is an indication of the significant complexity of these challenges. This review will consider the current state of the science and recommendations for appropriate application of cytokines in preclinical safety assessment.
Collapse
|
21
|
Abstract
Biologics encompass a broad range of therapeutics that include proteins and other products derived from living systems. Although the multiplicity of target organs often seen with new chemical entities is generally not seen with biologics, they can produce significant adverse reactions. Examples include IL-12 and an anti-CD28 antibody that resulted in patient deaths and/or long stays in intensive care units. Mechanisms of toxicities can be categorized as pharmacological or nonpharmacological, with most, excepting hypersensitivity reactions, associated with the interaction of the agent with its planned target. Unexpected toxicities generally arise as a result of previously unknown biology. Manufacturing quality is a significant issue relative to the toxicity of biologics. The development of recombinant technology represented the single biggest advance leading to humanized products with minimal or no contaminants in comparison to products purified from animal tissues. Nevertheless, the type of manufacturing process including choice of cell type, culture medium, and purification method can result in changes to the protein. For example, a change to the closure system for erythropoietin led to an increase in aplastic anemia as a result of changing the immunogenicity characteristics of the protein. Monoclonal antibodies represent a major class of successful biologics. Toxicities associated with these agents include those associated with the binding of the complementary determining region (CDR) with the target. First dose reactions or infusion reactions are generally thought to be mediated via the Fc region of the antibody activating cytokine release, and have been observed with several antibodies. Usually, these effects (flu-like symptoms, etc.) are transient with subsequent dosing. Although biologics can have nonpharmacologic toxicities, these are less common than with small molecule drugs.
Collapse
|
22
|
Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol 2009; 54:164-82. [PMID: 19345250 DOI: 10.1016/j.yrtph.2009.03.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 11/20/2022]
Abstract
An evaluation of potential antibody formation to biologic therapeutics during the course of nonclinical safety studies and its impact on the toxicity profile is expected under current regulatory guidance and is accepted standard practice. However, approaches for incorporating this information in the interpretation of nonclinical safety studies are not clearly established. Described here are the immunological basis of anti-drug antibody formation to biopharmaceuticals (immunogenicity) in laboratory animals, and approaches for generating and interpreting immunogenicity data from nonclinical safety studies of biotechnology-derived therapeutics to support their progression to clinical evaluation. We subscribe that immunogenicity testing strategies should be adapted to the specific needs of each therapeutic development program, and data generated from such analyses should be integrated with available clinical and anatomic pathology, pharmacokinetic, and pharmacodynamic data to properly interpret nonclinical studies.
Collapse
|
23
|
Graci JD, Colacino JM, Peltz SW, Dougherty JP, Gu Z. HIV Type-1 Latency: Targeted Induction of Proviral Reservoirs. ACTA ACUST UNITED AC 2009; 19:177-87. [DOI: 10.1177/095632020901900501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HIV type-1 (HIV-1) can establish a state of latency in infected patients, most notably in resting CD4+ T-cells. This long-lived reservoir allows for rapid re-emergence of viraemia upon cessation of highly active antiretroviral therapy, even after extensive and seemingly effective treatment. Successful depletion of such latent reservoirs is probably essential to ‘cure’ HIV-1 infection and will require therapeutic agents that can specifically and efficiently act on cells harbouring latent HIV-1 provirus. The mechanisms underlying HIV-1 latency are not well characterized, and it is becoming clear that numerous factors, both cell- and virus-derived, are involved in the maintenance of proviral latency. The interplay of these various factors in the context of viral reactivation is still poorly understood. In this article, we review the current knowledge regarding the mechanisms underlying maintenance of HIV-1 latency, both transcriptional and post-transcriptional, with a focus on potential targets that might be exploited to therapeutically purge latent proviral reservoirs from infected patients.
Collapse
Affiliation(s)
| | | | | | - Joseph P Dougherty
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Zhengxian Gu
- PTC Therapeutics, Inc., South Plainfield, NJ, USA
| |
Collapse
|
24
|
Safety assessment and dose selection for first-in-human clinical trials with immunomodulatory monoclonal antibodies. Clin Pharmacol Ther 2009; 85:247-58. [PMID: 19177065 DOI: 10.1038/clpt.2008.273] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Modulating immune responses with monoclonal antibodies (mAbs) that target immune molecules has become a promising therapeutic strategy and is under investigation for the treatment of cancer and (auto)-immune diseases. A major hurdle to the development and early clinical investigation of many immunomodulatory mAbs is the inherent risk of adverse immune-mediated drug reactions in humans, such as cytokine storms, autoimmunity, and immunosuppression. Dose selection for first-in-human (FIH) clinical trials involving immunomodulatory mAbs, and mAbs in general, is based on specifically designed preclinical safety studies, primarily in nonhuman primates (NHPs), and on mechanistic ex vivo investigations. Dose selection in such trials is challenging for a number of reasons related to safety. In this context, safety-relevant differences between NHP and human immune systems, species selection/qualification and preclinical study design considerations, the receptor occupancy model and its calculation, the minimal anticipated biological effect level (MABEL) and its use in the selection of a safe starting dose in humans, microdosing and the impact of immunogenicity on safety assessment of mAbs, and safety-relevant formulation properties of therapeutic mAbs are critically reviewed. In addition, the current regulatory requirements are presented and discussed to demonstrate how the TeGenero TGN1412 case is leading to increased regulatory scrutiny regarding dose selection for FIH clinical trials.
Collapse
|
25
|
Watterson C, Lanevschi A, Horner J, Louden C. A comparative analysis of acute-phase proteins as inflammatory biomarkers in preclinical toxicology studies: implications for preclinical to clinical translation. Toxicol Pathol 2009; 37:28-33. [PMID: 19171926 DOI: 10.1177/0192623308329286] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recently, in early clinical development, a few biologics and small molecules intended as antitumor or anti-inflammatory agents have caused a severe adverse pro-inflammatory systemic reaction also known as systemic inflammatory response syndrome (SIRS). This toxicity could result from expected pharmacological effects of a therapeutic antibody and/or from interaction with antigens expressed on cells/tissues other than the intended target. Clinical monitoring of SIRS is challenging because of the narrow diagnostic window to institute a successful intervening therapeutic strategy prior to acute circulatory collapse. Furthermore, for these classes of therapeutic agents, studies in animals have low predictive ability to identify potential human hazards. In vitro screens with human cells, though promising, need further development. Therefore, identification of improved preclinical diagnostic markers of SIRS will enable clinicians to select applicable markers for clinical testing and avoid potentially catastrophic events. There is limited preclinical toxicology data describing the interspecies performance of acute-phase proteins because the response time, type, and duration of major acute-phase proteins vary significantly between species. This review will attempt to address this intellectual gap, as well as the use and applicability of acute-phase proteins as preclinical to clinical translational biomarkers of SIRS.
Collapse
|
26
|
|