1
|
Wang Y, Zheng G, Xie X, Yu W, Wang J, Zang F, Yang C, Xiao Q, Zhang R, Wei L, Wu X, Liang L, Cao P, Xu C, Li J, Hu B, Zhang T, Wu J, Chen H. Low-dose celecoxib-loaded PCL fibers reverse intervertebral disc degeneration by up-regulating CHSY3 expression. J Nanobiotechnology 2023; 21:76. [PMID: 36864461 PMCID: PMC9983215 DOI: 10.1186/s12951-023-01823-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Intervertebral disc degeneration (IDD) has been identified as one of the predominant factors leading to persistent low back pain and disability in middle-aged and elderly people. Dysregulation of Prostaglandin E2 (PGE2) can cause IDD, while low-dose celecoxib can maintain PGE2 at the physiological level and activate the skeletal interoception. Here, as nano fibers have been extensively used in the treatment of IDD, novel polycaprolactone (PCL) nano fibers loaded with low-dose celecoxib were fabricated for IDD treatment. In vitro studies demonstrated that the nano fibers had the ability of releasing low-dose celecoxib slowly and sustainably and maintain PGE2. Meanwhile, in a puncture-induced rabbit IDD model, the nano fibers reversed IDD. Furthermore, low-dose celecoxib released from the nano fibers was firstly proved to promote CHSY3 expression. In a lumbar spine instability-induced mouse IDD model, low-dose celecoxib inhibited IDD in CHSY3wt mice rather than CHSY3-/- mice. This model indicated that CHSY3 was indispensable for low-dose celecoxib to alleviate IDD. In conclusion, this study developed a novel low-dose celecoxib-loaded PCL nano fibers to reverse IDD by maintaining PGE2 at the physiological level and promoting CHSY3 expression.
Collapse
Affiliation(s)
- Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Genjiang Zheng
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxi Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Fazhi Zang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Chen Yang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Qiangqiang Xiao
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rongcheng Zhang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Leixin Wei
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiaodong Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Lei Liang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Peng Cao
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jing Li
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.,Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Tao Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
2
|
Xu F, Zacuto M, Yoshikawa N, Desmond R, Hoerrner S, Itoh T, Journet M, Humphrey GR, Cowden C, Strotman N, Devine P. Asymmetric synthesis of telcagepant, a CGRP receptor antagonist for the treatment of migraine. J Org Chem 2010; 75:7829-41. [PMID: 20954694 DOI: 10.1021/jo101704b] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient, asymmetric synthesis of telcagepant (1), a CGRP receptor antagonist for the treatment of migraine, is described. This synthesis features the first application of iminium organocatalysis on an industrial scale. The key to the success of this organocatalytic transformation was the identification of a dual acid cocatalyst system, which allowed striking a balance of the reaction efficiency and product stability effectively. As such, via an iminium species, the necessnary C-6 stereogenicity was practically established in one operation in >95% ee. Furthermore, we enlisted an unprecedented Doebner-Knoevenagel coupling, which was also via an iminium species, to efficiently construct the C3-C4 bond with desired functionality. In order to prepare telcagepant (1) in high quality, a practical new protocol was discovered to suppress the formation of desfluoro impurities formed under hydrogenation conditions to <0.2%. An efficient lactamization facilitated by t-BuCOCl followed by a dynamic epimerization-crystallization resulted in the isolation of caprolactam acetamide with the desired C3 (R) and C6 (S) configuration cleanly. Isolating only three intermediates, the overall yield of this cost-effective synthesis was up to 27%. This environmentally responsible synthesis contains all of the elements required for a manufacturing process and prepares telcagepant (1) with the high quality required for pharmaceutical use.
Collapse
Affiliation(s)
- Feng Xu
- Department of Process Research, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Fischer MJM. Calcitonin gene-related peptide receptor antagonists for migraine. Expert Opin Investig Drugs 2010; 19:815-23. [PMID: 20482328 DOI: 10.1517/13543784.2010.490829] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IMPORTANCE OF THE FIELD Migraine is a highly prevalent disabling condition, and the current treatment options are not satisfactory. The role of calcitonin gene-related peptide (CGRP) in migraine pathophysiology is well established. CGRP receptor antagonists address this new target and have the potential to improve therapy for both responders and non-responders to previous options. AREAS COVERED IN THIS REVIEW This review describes CGRP, its receptors and their role in the pathophysiology of migraine. CGRP receptor antagonists are a recent development; all reported antagonists are reported in chronological order. The experimental evidence, as well as all clinical trials since the first proof-of-concept study in 2004, is discussed. WHAT THE READER WILL GAIN An overview of the CGRP system and why it provides an attractive drug target for headache. The main focus is on the currently presented CGRP receptor antagonists and clinical evidence for this new therapeutic option. TAKE HOME MESSAGE CGRP receptor antagonists will provide an additional and valuable therapeutic option for the treatment of headaches.
Collapse
|