1
|
Ledford BT, Chen M, Van Dyke M, Barron C, Zhang X, Cartaya A, Zheng Y, Ceylan A, Goldstein A, He JQ. Keratose Hydrogel Drives Differentiation of Cardiac Vascular Smooth Muscle Progenitor Cells: Implications in Ischemic Treatment. Stem Cell Rev Rep 2023; 19:2341-2360. [PMID: 37392292 DOI: 10.1007/s12015-023-10574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Peripheral artery disease (PAD) is a common vascular disorder in the extremity of limbs with limited clinical treatments. Stem cells hold great promise for the treatment of PAD, but their therapeutic efficiency is limited due to multiple factors, such as poor engraftment and non-optimal selection of cell type. To date, stem cells from a variety of tissue sources have been tested, but little information is available regarding vascular smooth muscle cells (VSMCs) for PAD therapy. The present study examines the effects of keratose (KOS) hydrogels on c-kit+/CD31- cardiac vascular smooth muscle progenitor cell (cVSMPC) differentiation and the therapeutic potential of the resultant VSMCs in a mouse hindlimb ischemic model of PAD. The results demonstrated that KOS but not collagen hydrogel was able to drive the majority of cVSMPCs into functional VSMCs in a defined Knockout serum replacement (SR) medium in the absence of differentiation inducers. This effect could be inhibited by TGF-β1 antagonists. Further, KOS hydrogel increased expression of TGF-β1-associated proteins and modulated the level of free TGF-β1 during differentiation. Finally, transplantation of KOS-driven VSMCs significantly increased blood flow and vascular densities of ischemic hindlimbs. These findings indicate that TGF-β1 signaling is involved in KOS hydrogel-preferred VSMC differentiation and that enhanced blood flow are likely resulted from angiogenesis and/or arteriogenesis induced by transplanted VSMCs.
Collapse
Affiliation(s)
- Benjamin T Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Miao Chen
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaonan Zhang
- Beijing Yulong Shengshi Biotechnology, Haidian District, Beijing, 100085, China
| | - Aurora Cartaya
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youjing Zheng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ahmet Ceylan
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aaron Goldstein
- Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Dambrot C, Braam SR, Tertoolen LGJ, Birket M, Atsma DE, Mummery CL. Serum supplemented culture medium masks hypertrophic phenotypes in human pluripotent stem cell derived cardiomyocytes. J Cell Mol Med 2014; 18:1509-18. [PMID: 24981391 PMCID: PMC4190898 DOI: 10.1111/jcmm.12356] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/27/2014] [Indexed: 11/27/2022] Open
Abstract
It has been known for over 20 years that foetal calf serum can induce hypertrophy in cultured cardiomyocytes but this is rarely considered when examining cardiomyocytes derived from pluripotent stem cells (PSC). Here, we determined how serum affected cardiomyocytes from human embryonic- (hESC) and induced pluripotent stem cells (hiPSC) and hiPSC from patients with hypertrophic cardiomyopathy linked to a mutation in the MYBPC3 gene. We first confirmed previously published hypertrophic effects of serum on cultured neonatal rat cardiomyocytes demonstrated as increased cell surface area and beating frequency. We then found that serum increased the cell surface area of hESC- and hiPSC-derived cardiomyocytes and their spontaneous contraction rate. Phenylephrine, which normally induces cardiac hypertrophy, had no additional effects under serum conditions. Likewise, hiPSC-derived cardiomyocytes from three MYBPC3 patients which had a greater surface area than controls in the absence of serum as predicted by their genotype, did not show this difference in the presence of serum. Serum can thus alter the phenotype of human PSC derived cardiomyocytes under otherwise defined conditions such that the effects of hypertrophic drugs and gene mutations are underestimated. It is therefore pertinent to examine cardiac phenotypes in culture media without or in low concentrations of serum.
Collapse
Affiliation(s)
- Cheryl Dambrot
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
3
|
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Boheler KR, Zambidis ET, Tung L. Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:178-95. [PMID: 22958937 DOI: 10.1016/j.pbiomolbio.2012.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022]
Abstract
Human embryonic stem cells have emerged as the prototypical source from which cardiomyocytes can be derived for use in drug discovery and cell therapy. However, such applications require that these cardiomyocytes (hESC-CMs) faithfully recapitulate the physiology of adult cells, especially in relation to their electrophysiological and contractile function. We review what is known about the electrophysiology of hESC-CMs in terms of beating rate, action potential characteristics, ionic currents, and cellular coupling as well as their contractility in terms of calcium cycling and contraction. We also discuss the heterogeneity in cellular phenotypes that arises from variability in cardiac differentiation, maturation, and culture conditions, and summarize present strategies that have been implemented to reduce this heterogeneity. Finally, we present original electrophysiological data from optical maps of hESC-CM clusters.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Hudson J, Titmarsh D, Hidalgo A, Wolvetang E, Cooper-White J. Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev 2011; 21:1513-23. [PMID: 21933026 DOI: 10.1089/scd.2011.0254] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures, single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells, corresponding to an increased expression of pluripotency markers OCT4 and NANOG, and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed, aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols, with induction of primitive streak cells using bone morphogenetic protein 4 and activin A, followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5, thus indicating the production of large numbers of immature cardiomyocytes (~65,000/cm(2) or ~1.5 per input hESC). This protocol was shown to be effective in HES3, H9, and, to a lesser, extent, MEL1 hESC lines. In addition, we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression, whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation, and potentially for the future treatment of heart failure.
Collapse
Affiliation(s)
- James Hudson
- Tissue Engineering and Microfluidics Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | | | | | | | | |
Collapse
|
5
|
Abstract
Inherited arrhythmia syndromes comprise an increasingly complex group of diseases involving mutations in multiple genes encoding ion channels, ion channel accessory subunits and channel interacting proteins, and various regulatory elements. These mutations serve to disrupt normal electrophysiology in the heart, leading to increased arrhythmogenic risk and death. These diseases have added impact as they often affect young people, sometimes without warning. Although originally thought to alter ion channel function, it is now increasingly recognized that mutations may alter ion channel protein and messenger RNA processing, to reduce the number of channels reaching the surface membrane. For many of these mutations, it is also known that several interventions may restore protein processing of mutant channels to increase their surface membrane expression toward normal. In this article, we reviewed inherited arrhythmia syndromes, focusing on long QT syndrome type 2, and discuss the complex biology of ion channel trafficking and pharmacological rescue of disease-causing mutant channels. Pharmacological rescue of misprocessed mutant channel proteins, or their transcripts providing appropriate small molecule drugs can be developed, has the potential for novel clinical therapies in some patients with inherited arrhythmia syndromes.
Collapse
|
6
|
Vidarsson H, Hyllner J, Sartipy P. Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev Rep 2010; 6:108-20. [PMID: 20091143 DOI: 10.1007/s12015-010-9113-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability of human embryonic stem cells to differentiate into spontaneously contracting cardiomyocyte-like cells has attracted substantial interest from the scientific community over the last decade. From having been difficult to control, human cardiomyogenesis in vitro is now becoming a process which, to a certain extent, can be effectively manipulated and directed. Although much research remains, new and improved protocols for guiding pluripotent stem cells to the cardiomyocyte lineage are accumulating in the scientific literature. However, the stem cell derived cardiomyocytes described to date, generally resemble immature embryonic/fetal cardiomyocytes, and they are in some functional and structural aspects different from adult cardiomyocytes. Thus, a future challenge will be to design strategies that eventually may allow the cells to reach a higher degree of maturation in vitro. Nevertheless, the cells which can be prepared using current protocols still have wide spread utility, and they have begun to find their way into the drug discovery platforms used in the pharmaceutical industry. In addition, stem cell derived cardiomyocytes and cardiac progenitors are anticipated to have a tremendous impact on how heart disease will be treated in the future. Here, we will discuss recent strategies for the generation of cardiomyocytes from human embryonic stem cells and recapitulate their features, as well as highlight some in vitro applications for the cells. Finally, opportunities in the area of cardiac regenerative medicine will be illustrated.
Collapse
Affiliation(s)
- Hilmar Vidarsson
- Cellartis AB, Arvid Wallgrens Backe 20, SE-413 46, Göteborg, Sweden
| | | | | |
Collapse
|
7
|
Jonsson MKB, Duker G, Tropp C, Andersson B, Sartipy P, Vos MA, van Veen TAB. Quantified proarrhythmic potential of selected human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 2010; 4:189-200. [PMID: 20303332 DOI: 10.1016/j.scr.2010.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 12/19/2022] Open
Abstract
To improve proarrhythmic predictability of preclinical models, we assessed whether human ventricular-like embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be selected following a standardized protocol. Also, we quantified their arrhythmogenic response and compared this to a contemporary used rabbit Purkinje fiber (PF) model. Multiple transmembrane action potentials (AP) were recorded from 164 hESC-CM clusters (9 different batches), and 12 isolated PFs from New Zealand White rabbits. AP duration (APD), early afterdepolarizations (EADs), triangulation (T), and short-term variability of repolarization (STV) were determined on application of the I(Kr) blocker E-4031 (0.03/0.1/0.3/1 muM). Isoproterenol (0.1 muM) was used to assess adrenergic response. To validate the phenotype, RNA isolated from atrial- and ventricular-like clusters (n=8) was analyzed using low-density Taqman arrays. Based on initial experiments, slow beating rate (<50 bpm) and long APD (>200 ms) were used to select 31 ventricular-like clusters. E-4031 (1 muM) prolonged APD (31/31) and induced EADs only in clusters with APD90>300 ms (11/16). EADs were associated with increased T (1.6+/-0.2 vs 2.0+/-0.3) and STV (2.7+/-1.5 vs 6.9+/-1.9). Rabbit PF reacted in a similar way with regards to EADs (5/12), increased T (1.3+/-0.1 vs 1.9+/-0.4), and STV (1.2+/-0.9 vs 7.1+/-5.6). According to ROC values, hESC-CMs (STV 0.91) could predict EADs at least equivalent to PF (STV 0.69). Isoproterenol shortened APD and completely suppressed EADs. Gene expression analysis revealed that HCN1/2, KCNA5, and GJA5 were higher in atrial/nodal-like cells, whereas KCNJ2 and SCN1B were higher in ventricular-like cells (P<0.05). Selection of hESC-CM clusters with a ventricular-like phenotype can be standardized. The proarrhythmic results are qualitatively and quantitatively comparable between hESC-CMs and rabbit PF. Our results indicate that additional validation of this new safety pharmacology model is warranted.
Collapse
Affiliation(s)
- Malin K B Jonsson
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Mohr JC, Zhang J, Azarin SM, Soerens AG, de Pablo JJ, Thomson JA, Lyons GE, Palecek SP, Kamp TJ. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials 2009; 31:1885-93. [PMID: 19945747 DOI: 10.1016/j.biomaterials.2009.11.033] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 11/13/2009] [Indexed: 12/21/2022]
Abstract
The differentiation of human embryonic stem cells (hESCs) into cardiomyocytes (CMs) using embryoid bodies (EBs) is relatively inefficient and highly variable. Formation of EBs using standard enzymatic disaggregation techniques results in a wide range of sizes and geometries of EBs. Use of a 3-D cuboidal microwell system to culture hESCs in colonies of defined dimensions, 100-500 microm in lateral dimensions and 120 microm in depth, enabled formation of more uniform-sized EBs. The 300 microm microwells produced highest percentage of contracting EBs, but flow cytometry for myosin light chain 2A (MLC2a) expressing cells revealed a similar percentage (approximately 3%) of cardiomyocytes formed in EBs from 100 microm to 300 microm microwells. These data, and immunolabeling with anti-MF20 and MLC2a, suggest that the smaller EBs are less likely to form contracting EBs, but those contracting EBs are relatively enriched in cardiomyocytes compared to larger EB sizes where CMs make up a proportionately smaller fraction of the total cells. We conclude that microwell-engineered EB size regulates cardiogenesis and can be used for more efficient and reproducible formation of hESC-CMs needed for research and therapeutic applications.
Collapse
Affiliation(s)
- Jeffrey C Mohr
- Department of Chemical and Biological Engineering, University of Wisconsin College of Engineering, 1415 Engineering Drive, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|