1
|
Ubago-Rodríguez A, Quiñones-Vico MI, Sánchez-Díaz M, Sanabria-de la Torre R, Sierra-Sánchez Á, Montero-Vílchez T, Fernández-González A, Arias-Santiago S. Challenges in Psoriasis Research: A Systematic Review of Preclinical Models. Dermatology 2024; 240:620-652. [PMID: 38857576 DOI: 10.1159/000538993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory skin disease with variable clinical presentation, multifactorial etiology and an immunogenetic basis. Several studies demonstrate that it results from a dysregulated interaction between skin keratinocytes, immune cells, and the environment that leads to a persistent inflammatory process modulated by cytokines and T cells. The development of new treatment options requires increased understanding of pathogenesis. However, the successful implementation of effective drugs requires well-characterized and highly available preclinical models that allow researchers to quickly and reproducibly determine their safety and efficacy. METHODS A systematic search on PubMed and Scopus databases was performed and assessed to find appropriate articles about psoriasis models applying the key words previously defined. The PRISMA guidelines were employed. RESULTS A total of 45 original articles were selected that met the selection criteria. Among these, there are articles on in vivo, in vitro, and ex vivo models, with the in vitro model being the majority due to its ease of use. Within animal models, the most widely used in recent years are chemically induced models using a compound known as imiquimod. However, the rest of the animal models used throughout the disease's research were also discussed. On the other hand, in vitro models were divided into two and three dimensions. The latter were the most used due to their similarity to human skin. Lastly, the ex vivo models were discussed, although they were the least used due to their difficulty in obtaining them. CONCLUSIONS Therefore, this review summarizes the current preclinical models (in vivo, in vitro, and ex vivo), discussing how to develop them, their advantages, limitations, and applications. There are many challenges to improve the development of the different models. However, research in these in vitro model studies could reduce the use of animals. This is favored with the use of future technologies such as 3D bioprinting or organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain,
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain,
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain,
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain,
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sánchez-Díaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| | - Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Trinidad Montero-Vílchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| |
Collapse
|
2
|
de Souza Oliveira VH, Amorim MA, de Oliveira JRJM, Soley BS, Rocha FG, de Mello Bandenburg M, Lejeune VBP, de Lima Silva AHB, Witherden DA, Havran WL, Zanoveli JM, Cabrini DA, Calixto JB, Otuki MF, André E. Anti-proliferative and anti-inflammatory effects of the application of baclofen cream, a GABA B receptor agonist, on skin inflammation in mice. Eur J Pharmacol 2023; 955:175910. [PMID: 37479017 DOI: 10.1016/j.ejphar.2023.175910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Previous studies have demonstrated the role of γ-aminobutyric acid type B (GABAB) receptors in skin-related conditions and pain. However, most studies have focused on the main effects of GABAB on the central nervous system. Therefore, this study has aimed to determine the potential topical anti-inflammatory and anti-proliferative effects of baclofen cream in an inflammatory skin disease model. The effects of the baclofen cream were evaluated using acute and chronic models of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mouse ears. Histological and immunohistochemical evaluations were performed using an ear oedema assay. The effect of baclofen on keratinocyte proliferation was assessed in PAM212, the murine keratinocyte cell line. The results demonstrate that a single topical application of 5% baclofen, 7.5% baclofen, and 1% dexamethasone each inhibited acute TPA-induced ear oedema (58.94 ± 6.14%, 47.73 ± 11.26%, and 87.33 ± 4.59%, respectively). These results were confirmed by histological analysis. In the chronic model, baclofen (5%) and dexamethasone (1%) each inhibited ear oedema and the maximum inhibitory effect was reached at the end of the experiment (9th day of TPA application) with a percentage inhibition of 54.60 ± 6.15% for baclofen and 71.68 ± 3.45% for dexamethasone, when compared to the vehicle. These results were confirmed by histological analysis. Baclofen and dexamethasone also reduced proliferating cell nuclear antigen expression by 62.01 ± 6.65% and 70.42 ± 6.11%, respectively. However, baclofen did not inhibit keratinocyte proliferation in PAM212 cells. In conclusion, these results demonstrate that baclofen exhibits notable topical antiproliferative and anti-inflammatory properties and could be a potential therapeutic alternative for treating inflammatory and proliferative skin diseases.
Collapse
Affiliation(s)
| | - Mayara Alves Amorim
- Department of Pharmacology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | | | - Bruna Silva Soley
- Department of Pharmacology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | - Deborah A Witherden
- Department of Pharmacology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Wendy L Havran
- Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | - Michel Fleith Otuki
- Department of Pharmacology, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Eunice André
- Department of Pharmacology, Universidade Federal Do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Radulska A, Pelikant-Małecka I, Jendernalik K, Dobrucki IT, Kalinowski L. Proteomic and Metabolomic Changes in Psoriasis Preclinical and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24119507. [PMID: 37298466 DOI: 10.3390/ijms24119507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Skin diseases such as psoriasis (Ps) and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases. Overlap of autoinflammatory and autoimmune conditions hinders diagnoses and identifying personalized patient treatments due to different psoriasis subtypes and the lack of verified biomarkers. Recently, proteomics and metabolomics have been intensively investigated in a broad range of skin diseases with the main purpose of identifying proteins and small molecules involved in the pathogenesis and development of the disease. This review discusses proteomics and metabolomics strategies and their utility in research and clinical practice in psoriasis and psoriasis arthritis. We summarize the studies, from in vivo models conducted on animals through academic research to clinical trials, and highlight their contribution to the discovery of biomarkers and targets for biological drugs.
Collapse
Affiliation(s)
- Adrianna Radulska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Kamila Jendernalik
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405N Mathews Ave., MC-251, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| |
Collapse
|
4
|
Christensen PKF, Hansen AK, Skov S, Engkilde K, Larsen J, Høyer-Hansen MH, Koch J. Sustaining the T-cell activity in xenografted psoriasis skin. PLoS One 2023; 18:e0278390. [PMID: 36649237 PMCID: PMC9844869 DOI: 10.1371/journal.pone.0278390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 01/18/2023] Open
Abstract
Xenografting of psoriasis skin onto immune deficient mice has been widely used to obtain proof-of-principle of new drug candidates. However, the lack of human T-cell activity in the grafts limits the use of the model. Here, we show that xenografting of lesional skin from psoriasis patients onto human IL-2 NOG mice results in increased numbers of human CD3+ cells in the grafts, axillary lymph nodes and blood from human IL-2 NOG mice compared to C.B-17 scid and NOG mice. In addition, disease relevant human cytokine levels were higher in graft lysates and serum from human IL-2 NOG mice. However, the epidermis was lacking and no efficacy of ustekinumab, a human anti-P40 antibody targeting both IL-12 and IL-23, was shown. Thus, despite the sustained T-cell activity, the model needs further investigations and validation to capture more aspects of psoriasis.
Collapse
Affiliation(s)
- Pernille Kristine Fisker Christensen
- LEO Pharma A/S, Ballerup, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Søren Skov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
5
|
Ex vivo culture of lesional psoriasis skin for pharmacological testing. J Dermatol Sci 2019; 97:109-116. [PMID: 31948839 DOI: 10.1016/j.jdermsci.2019.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Psoriasis is a chronic, inflammatory skin disorder resulting from a complex interplay between immune and skin cells via release of soluble mediators. While a lot is known about the molecular mechanisms behind psoriasis pathogenesis, there is still a need for preclinical research models that accuratelyreplicate the disease. OBJECTIVE This study aimed to develop and characterize ex vivo culture of psoriasis skin as a model for pharmacological testing, where the immunological events of psoriasis can be followed. METHODS Full thickness punch biopsies of lesional psoriasis skin were cultured in submerged conditions up to 144 h followingin situ T cell stimulation with rhIL-23 and anti-CD3 and anti-CD28 antibodies. The T cell mediated skin inflammation was assessed by gene and protein l analysis for a panel of inflammatory mediators. Tissue integrity and morphology were evaluated by histological analysis. RESULTS T cell stimulation resulted in functional and psoriasis specificin situ activation of T cells. The expression levels of most of the proinflammatory mediators related to both immune and skin cells were comparable to these in freshly isolated tissue at 48 and 96 h of culture. Tissue integrity and morphology were sustained up to 96 h. Treatment with a corticosteroid reduced the expression of several pro-inflammatory cytokines and chemokines, whereas anti-IL-17A antibody treatment reduced the expression of the IL-17A downstream markers IL-8 and DEFB4. CONCLUSION By preserving keyimmunopathological mechanisms of psoriasis, ex vivo culture of psoriasis skin can be used for the investigation of inflammatory processes of psoriasis and for preclinical drug discovery research.
Collapse
|
6
|
Florian P, Flechsenhar KR, Bartnik E, Ding‐Pfennigdorff D, Herrmann M, Bryce PJ, Nestle FO. Translational drug discovery and development with the use of tissue‐relevant biomarkers: Towards more physiological relevance and better prediction of clinical efficacy. Exp Dermatol 2019; 29:4-14. [DOI: 10.1111/exd.13942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Florian
- Department of Type 1/17 Immunology and Arthritis Sanofi Frankfurt Germany
| | | | - Eckart Bartnik
- Department of Type 1/17 Immunology and Arthritis Sanofi Frankfurt Germany
| | | | - Matthias Herrmann
- Department of Type 1/17 Immunology and Arthritis Sanofi Frankfurt Germany
| | - Paul J. Bryce
- Department of Type 2 Inflammation and Fibrosis Sanofi Cambridge Massachusetts
| | - Frank O. Nestle
- Global Head of Immunology Therapeutic Research Area Sanofi Cambridge Massachusetts
| |
Collapse
|
7
|
Limón D, Talló Domínguez K, Garduño-Ramírez ML, Andrade B, Calpena AC, Pérez-García L. Nanostructured supramolecular hydrogels: Towards the topical treatment of Psoriasis and other skin diseases. Colloids Surf B Biointerfaces 2019; 181:657-670. [PMID: 31212138 DOI: 10.1016/j.colsurfb.2019.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 01/10/2023]
Abstract
Supramolecular hydrogels were synthesized using a bis-imidazolium based amphiphile, and incorporating chemically diverse drugs, such as the cytostatics gemcitabine hydrochloride and methotrexate sodium salt, the immunosuppressive drug tacrolimus, as well as the corticoid drugs betamethasone 17-valerate and triamcinolone acetonide, and their potential as drug delivery agents in the dermal treatment of Psoriasis was evaluated. The rheological behavior of gels was studied, showing in all cases suitable viscoelastic properties for topical drug delivery. Scanning electron microscopy (SEM) shows that the drugs included have a great influence on the gel morphology at the microscopic level, as the incorporation of gemcitabine hydrochloride leads to slightly thicker fibers, the incorporation of tacrolimus induces flocculation and spherical precipitates, and the incorporation of methotrexate forms curled fibers. 1H NMR spectroscopy experiments show that these drugs not only remain dissolved at the interstitial space, but up to 72% of either gemcitabine or methotrexate, and up to 38% of tacrolimus, is retained within the gel fibers in gels formed with a 1:1 gelator:drug molar ratio. This unique fiber incorporation not only protects the drug from degradation, but also importantly induces a Two Phase Exponential drug release, where the first phase corresponds to the drug dissolved in the interstitial space, while the second phase corresponds to the drug exiting from the gel fibers, and where the speed in each phase is in accordance with the physicochemical properties of the drugs, opening perspectives for controlled delivery. Skin permeation ex vivo tests show how these gels successfully promote the drug permeation and retention inside the skin for reaching their therapeutic target, while in vivo experiments demonstrate that they decrease the hyperplasia and reduce the macroscopic tissue damage typically observed in psoriatic skin, significantly more than the drugs in solution. All these characteristics, beside the spontaneous and easy preparation (room temperature and soft stirring), make these gels a good alternative to other routes of administration for Psoriasis treatment, increasing the drug concentration at the target tissue, and minimizing side effects.
Collapse
Affiliation(s)
- David Limón
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Kirian Talló Domínguez
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, Mexico
| | - Berenice Andrade
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, Mexico
| | - Ana C Calpena
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain; Departament de Farmàcia, Tecnologia Farmacèutica i Fisicoquímica, Universitat de Barcelona, Av. Joan XXI, 27-31, 08028 Barcelona, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Sangiovanni E, Di Lorenzo C, Piazza S, Manzoni Y, Brunelli C, Fumagalli M, Magnavacca A, Martinelli G, Colombo F, Casiraghi A, Melzi G, Marabini L, Restani P, Dell'Agli M. Vitis vinifera L. Leaf Extract Inhibits In Vitro Mediators of Inflammation and Oxidative Stress Involved in Inflammatory-Based Skin Diseases. Antioxidants (Basel) 2019; 8:antiox8050134. [PMID: 31100904 PMCID: PMC6562865 DOI: 10.3390/antiox8050134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is a chronic cutaneous condition characterized by the release of pro-inflammatory mediators and oxidative stress. The reduction of these factors is currently the most effective strategy to inhibit the symptoms of pathology. Antioxidants from natural sources are increasingly used to improve skin conditions. Dried red leaves from grapevine (Vitis vinifera L., cv Teinturiers) showed anti-inflammatory and anti-bacterial activities, but their possible effects on keratinocytes have not been previously investigated. In this study we tested the ability of a water extract from grapevine leaves (VVWE) to inhibit inflammatory conditions in human keratinocytes (HaCaT cells), challenged with proinflammatory (tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS)) or prooxidant (ultraviolet B radiation (UVB) or H2O2) mediators. VVWE inhibited interleukin-8 (IL-8) secretion induced by proinflammatory stimuli, acting on the IL-8 promoter activity, but the effect was lower when prooxidant mediators were used. The effect was partly explained by the reduction of nuclear factor-κB (NF-κB)-driven transcription and nuclear translocation. Furthermore, vascular endothelial growth factor (VEGF) secretion, a regulator of angiogenesis, was inhibited by VVWE, but not matrix metalloproteinase-9 (MMP-9), a protease involved in matrix remodeling. VVWE, assayed on Franz diffusion cell system, showed a marked reduction of High Performance Liquid Chromatography (HPLC)-identified compounds. Pure molecules individually failed to reduce TNF-α-induced IL-8 release, suggesting synergistic effects or the presence of other bioactive compounds still unknown.
Collapse
Affiliation(s)
- Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Yuri Manzoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Cecilia Brunelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Andrea Magnavacca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Francesca Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Antonella Casiraghi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Laura Marabini
- Department Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
9
|
Staunstrup NH, Stenderup K, Mortensen S, Primo MN, Rosada C, Steiniche T, Liu Y, Li R, Schmidt M, Purup S, Dagnæs-Hansen F, Schrøder LD, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1. Dis Model Mech 2018; 10:869-880. [PMID: 28679670 PMCID: PMC5536904 DOI: 10.1242/dmm.028662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/12/2017] [Indexed: 01/15/2023] Open
Abstract
Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology. Summary: A cloned porcine disease model to advance topical treatment in the debilitating skin disorder psoriasis.
Collapse
Affiliation(s)
- Nicklas Heine Staunstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,iPSYCH The Lundbeck Foundation Initiative For Integrative Psychiatric Research, Denmark.,iSEQ, Centre for integrative sequencing, Aarhus, Denmark
| | - Karin Stenderup
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Sidsel Mortensen
- Department of Skin Inflammation Pharmacology, LEO Pharma, 2750 Ballerup, Denmark
| | | | - Cecilia Rosada
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Torben Steiniche
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Ying Liu
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | | | | | - Lars Svensson
- Department of NME Ideation, LEO Pharma, 2750 Ballerup, Denmark
| | | | - Henrik Callesen
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,iSEQ, Centre for integrative sequencing, Aarhus, Denmark.,HuaDa JiYin (BGI), Shenzhen 518083, China
| | | |
Collapse
|
10
|
Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin. Photodiagnosis Photodyn Ther 2015; 12:444-58. [DOI: 10.1016/j.pdpdt.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/25/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
|
11
|
Forkel S, Schön M, Hildmann A, Claßen A, John SM, Danker K, Schön MP. Inositoylated platelet-activating factor (Ino-C2-PAF) modulates dynamic lymphocyte-endothelial cell interactions and alleviates psoriasis-like skin inflammation in two complementary mouse models. J Invest Dermatol 2014; 134:2510-2520. [PMID: 24714204 DOI: 10.1038/jid.2014.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/23/2014] [Accepted: 03/14/2014] [Indexed: 02/08/2023]
Abstract
Psoriasis, a tumor necrosis factor alpha (TNFα)-governed inflammatory disorder with prominent dysregulation of cutaneous vascular functions, has evolved into a model disorder for studying anti-inflammatory therapies. We present experimental in vitro and in vivo data on 1-O-octadecyl-2-O-(2-(myo-inositolyl)-ethyl)-sn-glycero-3-(R/S)-phosphatidyl-choline (Ino-C2-PAF), the lead compound of a class of synthetic glycosylated phospholipids, in anti-inflammatory therapy. Ino-C2-PAF strongly induced apoptosis only in TNFα-stimulated, but not in untreated human vascular endothelial cells. Moreover, TNFα-induced endothelial adhesion molecules that mediated the rolling and firm adhesion of leukocytes (vascular cell adhesion protein-1 (VCAM-1), E-selectin, and ICAM-1) were selectively downregulated by Ino-C2-PAF. Similarly, expression of L-selectin, VCAM-1 receptor α4β1 integrin , and lymphocyte function-associated antigen-1 on human peripheral blood mononuclear cells was reduced without induction of apoptosis. Functionally, these changes were accompanied by significant impairment of rolling and adhesion of human peripheral blood lymphocytes on TNFα-activated endothelial cells in a dynamic flow chamber system. When the therapeutic potential of Ino-C2-PAF was assessed in two complementary mouse models of psoriasis, K5.hTGFβ1 transgenic and JunB/c-Jun-deficient mice, Ino-C2-PAF led to significant alleviation of the clinical symptoms and normalized the pathological cutaneous changes including vascularization. There were no overt adverse effects. These findings suggested that Ino-C2-PAF is a potential candidate in the therapy of inflammatory skin diseases that include abnormal vascular functions.
Collapse
Affiliation(s)
- Susann Forkel
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | - Margarete Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | - Annette Hildmann
- Institute of Biochemistry, Charité University Medical Center, Berlin, Germany
| | - Anna Claßen
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen and University of Osnabrück, Osnabrück, Germany
| | - Swen-Malte John
- Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen and University of Osnabrück, Osnabrück, Germany; Department of Dermatology, Environmental Medicine and Health Care Theory, University of Osnabrück, Osnabrück, Germany
| | - Kerstin Danker
- Institute of Biochemistry, Charité University Medical Center, Berlin, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen and University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
12
|
Bracke S, Desmet E, Guerrero-Aspizua S, Tjabringa SG, Schalkwijk J, Van Gele M, Carretero M, Lambert J. Identifying targets for topical RNAi therapeutics in psoriasis: assessment of a new in vitro psoriasis model. Arch Dermatol Res 2013; 305:501-12. [PMID: 23775225 DOI: 10.1007/s00403-013-1379-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/19/2022]
Abstract
Diseases of the skin are amenable to RNAi-based therapies and targeting key components in the pathophysiology of psoriasis using RNAi may represent a successful new therapeutic strategy. We aimed to develop a straightforward and highly reproducible in vitro psoriasis model useful to study the effects of gene knockdown by RNAi and to identify new targets for topical RNAi therapeutics. We evaluated the use of keratinocytes derived from psoriatic plaques and normal human keratinocytes (NHKs). To induce a psoriatic phenotype in NHKs, combinations of pro-inflammatory cytokines (IL-1α, IL-17A, IL-6 and TNF-α) were tested. The model based on NHK met our needs of a reliable and predictive preclinical model, and this model was further selected for gene expression analyses, comprising a panel of 55 psoriasis-associated genes and five micro-RNAs (miRNAs). Gene silencing studies were conducted by using small interfering RNAs (siRNAs) and miRNA inhibitors directed against potential target genes such as CAMP and DEFB4 and miRNAs such as miR-203. We describe a robust and highly reproducible in vitro psoriasis model that recapitulates expression of a large panel of genes and miRNAs relevant to the pathogenesis of psoriasis. Furthermore, we show that our model is a powerful first step model system for testing and screening RNAi-based therapeutics.
Collapse
Affiliation(s)
- S Bracke
- Department of Dermatology 2K4, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|