1
|
Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, Jantan I, Lam KW. Flavonoid diversity and roles in the lipopolysaccharide-mediated inflammatory response of monocytes and macrophages. Future Med Chem 2024; 16:75-99. [PMID: 38205612 DOI: 10.4155/fmc-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
Collapse
Affiliation(s)
- Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kok Wai Lam
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ng CH, Tan TH, Tioh NH, Seng HL, Ahmad M, Ng SW, Gan WK, Low ML, Lai JW, Zulkefeli M. Synthesis, characterization and multiple targeting with selectivity: Anticancer property of ternary metal phenanthroline-maltol complexes. J Inorg Biochem 2021; 220:111453. [PMID: 33895694 DOI: 10.1016/j.jinorgbio.2021.111453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 02/01/2023]
Abstract
The cobalt(II), copper(II) and zinc(II) complexes of 1,10-phenanthroline (phen) and maltol (mal) (complexes 1, 2, 3 respectively) were prepared from their respective metal(II) chlorides and were characterized by FT-IR, elemental analysis, UV spectroscopy, molar conductivity, p-nitrosodimethylaniline assay and mass spectrometry. The X-ray structure of a single crystal of the zinc(II) analogue reveals a square pyramidal structure with distinctly shorter apical chloride bond. All complexes were evaluated for their anticancer property on breast cancer cell lines MCF-7 and MDA-MB-231, and normal cell line MCF-10A, using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological studies. Complex 2 was most potent for 24, 48 and 72 h treatment of cancer cells but it was not selective towards cancer over normal cells. The mechanistic studies of the cobalt(II) complex 1 involved apoptosis assay, cell cycle analysis, dichloro-dihydro-fluorescein diacetate assay, intracellular reactive oxygen species assay and proteasome inhibition assay. Complex 1 induced low apoptosis, generated low level of ROS and did not inhibit proteasome in normal cells. The study of the DNA binding and nucleolytic properties of complexes 1-3 in the absence or presence of H2O2 or sodium ascorbate revealed that only complex 1 was not nucleolytic.
Collapse
Affiliation(s)
- Chew Hee Ng
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Thean Heng Tan
- Faculty of Science and Engineering, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia
| | - Ngee Heng Tioh
- Faculty of Science and Engineering, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia
| | - Hoi Ling Seng
- Faculty of Science and Engineering, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia
| | - Munirah Ahmad
- Molecular Pathology Unit, Cancer Research Center, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | - Seik Weng Ng
- UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Wei Khang Gan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - May Lee Low
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Jing Wei Lai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Mohd Zulkefeli
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Pratheeshkumar P, Siraj AK, Divya SP, Parvathareddy SK, Begum R, Melosantos R, Al-Sobhi SS, Al-Dawish M, Al-Dayel F, Al-Kuraya KS. Downregulation of SKP2 in Papillary Thyroid Cancer Acts Synergistically With TRAIL on Inducing Apoptosis via ROS. J Clin Endocrinol Metab 2018; 103:1530-1544. [PMID: 29300929 DOI: 10.1210/jc.2017-02178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 02/09/2023]
Abstract
CONTEXT AND OBJECTIVE S-phase kinase protein 2 (SKP2) is an F-box protein with proteasomal properties and has been found to be overexpressed in a variety of cancers. However, its role in papillary thyroid cancer (PTC) has not been fully elucidated. EXPERIMENTAL DESIGN SKP2 expression was assessed by immunohistochemistry in a tissue microarray format on a cohort of >1000 PTC samples. In vitro and in vivo studies were performed using proteasome inhibitor bortezomib and proapoptopic death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) either alone or in combination on PTC cell lines. RESULTS SKP2 was overexpressed in 45.5% of PTC cases and was significantly associated with extrathyroidal extension (P = 0.0451), distant metastasis (P = 0.0435), and tall cell variant (P = 0.0271). SKP2 overexpression was also directly associated with X-linked inhibitor of apoptosis protein overexpression (P < 0.0001) and Bcl-xL overexpression (P = 0.0005) and inversely associated with death receptor 5 (P < 0.0001). The cotreatment of bortezomib and TRAIL synergistically induced apoptosis via mitochondrial apoptotic pathway in PTC cell lines. Furthermore, bortezomib and TRAIL synergistically induced reactive oxygen species (ROS) generation and caused death receptor 5 upregulation through activation of the extracellular signal-regulated kinase-C/EBP homologous protein signaling cascade. Finally, bortezomib treatment augmented the TRAIL-mediated anticancer effect on PTC xenograft tumor growth in nude mice. CONCLUSION These data suggest that SKP2 is a potential therapeutic target in PTC and that a combination of bortezomib and TRAIL might be a viable therapeutic option for the treatment of patients with aggressive PTC.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Rafia Begum
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Roxanne Melosantos
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saif S Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Al-Dawish
- Department of Diabetes and Endocrinology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Huang W, Yuan X, Sun T, Fan S, Wang J, Zhou Q, Guo W, Ran F, Ge Z, Yang H, Li R, Cui J. Proteasome Inhibitor YSY01A Abrogates Constitutive STAT3 Signaling via Down-regulation of Gp130 and JAK2 in Human A549 Lung Cancer Cells. Front Pharmacol 2017; 8:476. [PMID: 28883791 PMCID: PMC5574410 DOI: 10.3389/fphar.2017.00476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Proteasome inhibition interfering with many cell signaling pathways has been extensively explored as a therapeutic strategy for cancers. Proteasome inhibitor YSY01A is a novel agent that has shown remarkable anti-tumor effects; however, its mechanisms of action are not fully understood. Here we report that YSY01A is capable of suppressing cancer cell survival by induction of apoptosis. Paradoxically, we find that YSY01A abrogates constitutive activation of STAT3 via proteasome-independent degradation of gp130 and JAK2, but not transcriptional regulation, in human A549 non-small cell lung cancer cells. The reduction in gp130 and JAK2 can be restored by co-treatment with 3-methyladenine, an early-stage autophagy lysosome and type I/III PI3K inhibitor. YSY01A also effectively inhibits cancer cell migration and lung xenograft tumor growth with little adverse effect on animals. Thus, our findings suggest that YSY01A represents a promising candidate for further development of novel anticancer therapeutics targeting the proteasome.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical CollegeBeijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Ting Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Shujie Fan
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Jun Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Quan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Wei Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Fuxiang Ran
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Zemei Ge
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Runtao Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Jingrong Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| |
Collapse
|
5
|
Casañola-Martin GM, Le-Thi-Thu H, Pérez-Giménez F, Marrero-Ponce Y, Merino-Sanjuán M, Abad C, González-Díaz H. Multi-output model with Box–Jenkins operators of linear indices to predict multi-target inhibitors of ubiquitin–proteasome pathway. Mol Divers 2015; 19:347-56. [DOI: 10.1007/s11030-015-9571-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/14/2015] [Indexed: 12/29/2022]
|
6
|
TANG WEIWEI, SU GUANGJIAN, LI JIEYU, LIAO JINRONG, CHEN SHUPING, HUANG CHUANZHONG, LIU FANG, CHEN QIANG, YE YUNBIN. Enhanced anti-colorectal cancer effects of carfilzomib combined with CPT-11 via downregulation of nuclear factor-κB in vitro and in vivo. Int J Oncol 2014; 45:995-1010. [PMID: 24968890 PMCID: PMC4121410 DOI: 10.3892/ijo.2014.2513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Upregulation of nuclear factor-κB (NF-κB) in colorectal carcinoma (CRC) accelerates tumor growth, whereas, irinotecan (CPT-11)-induced NF-κB activation reduces chemosensitivity and weakens the anti-colorectal cancer function itself, while proteasome inhibitors can inhibit NF-κB and improve the effect of chemotherapy. Carfilzomib (CFZ) is a novel proteasome inhibitor that has been recently approved by the FDA and is in clinical use for the treatment of multiple myeloma, but little is known about its activity against CRC. The aim of the present study was to explore whether CFZ alone or in combination with CPT-11 is effective in CRC treatment. We evaluated the novel therapeutic ability and mechanism of action of CFZ in CRC in vitro and in vivo. SW620 cells were incubated with CFZ alone or in combination with CPT-11. Cell proliferation was assessed by WST-1 and clonogenic assays, the cytotoxic interaction was assessed with a combination index (CI). Cell cycle progression was analysed with flow cytometry. Cell apoptosis was evaluated by detecting the Annexin V/propidium iodide (PI) ratio, caspase 3 and CD95 expression, and with TUNEL staining. Cell migration and invasion was determined with a wound-healing assay and a Transwell matrix penetration assay. A CRC xenograft model was established to monitor tumor growth. EMSA was used to analyse NF-κB activation and western blot analysis was used to detect the protein levels of related signaling factors. CFZ significantly inhibited the growth of SW620 cells, and had synergistic inhibitory effects with CPT-11 on survival and colony formation; possibly by inhibition of NF-κB activation, MEK/ERK and PI3K/AKT pathway factor dephosphorylation and survivin downregulation. Co-administration of CFZ and CPT-11 induced G2/M arrest, increased p21WAF1/CIP, and decreased mutant p53 and cdc25c expression. Induction of apoptosis was accompanied by marked increases in PARP cleavage, caspase 3 activation, an increase of CD95 and p-p38, and ATF3 activation. Combination treatment lowered the invasive and migration ability of SW620 cells, reduced MMP and increased TIMP protein expression. Finally, co-administration of CFZ and CPT-11 suppressed tumor growth and increased apoptosis compared with single-agent treatment in SW620 xenograft models correlated with NF-κB downregulation. Carfilzomib alone or in combination with CPT-11 is effective against colorectal cancer through inhibition of multiple mechanisms related to NF-κB, and could be a potential novel therapy for CRC.
Collapse
Affiliation(s)
- WEIWEI TANG
- Graduate School of Education, Fujian Medical University, Fuzhou, P.R. China
| | - GUANGJIAN SU
- Graduate School of Education, Fujian Medical University, Fuzhou, P.R. China
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou, P.R. China
| | - JIEYU LI
- Graduate School of Education, Fujian Medical University, Fuzhou, P.R. China
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou, P.R. China
| | - JINRONG LIAO
- Graduate School of Education, Fujian Medical University, Fuzhou, P.R. China
| | - SHUPING CHEN
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou, P.R. China
| | - CHUANZHONG HUANG
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou, P.R. China
| | - FANG LIU
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou, P.R. China
| | - QIANG CHEN
- Graduate School of Education, Fujian Medical University, Fuzhou, P.R. China
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, P.R. China
| | - YUNBIN YE
- Graduate School of Education, Fujian Medical University, Fuzhou, P.R. China
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou, P.R. China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, P.R. China
| |
Collapse
|
7
|
Pautasso C, Troia R, Genuardi M, Palumbo A. Pharmacophore modeling technique applied for the discovery of proteasome inhibitors. Expert Opin Drug Discov 2014; 9:931-43. [PMID: 24877566 DOI: 10.1517/17460441.2014.923838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The 26S proteasome has many important roles in the biological functions of the cells, and proteasome inhibitors have multiple and complex activities on cells. These compounds can be natural or synthesized. Most synthetic derivatives have been rationally designed, synthesized and optimized to obtain the best selectivity and increase the activity. The design of chemical entities with desired molecular identification, which plays an important role in biological systems, is provided by pharmacophore modeling. Indeed, pharmacophore models can be established either in a ligand-based manner or in a receptor-based manner. AREAS COVERED The authors discuss the application of pharmacophore modeling techniques to proteasome inhibitors development. Furthermore, the article reviews the classification of the currently discovered proteasome inhibitors where the principal mechanism of action and clinical application are represented. EXPERT OPINION In the era of new drug development, database of compounds should be thoroughly evaluated with a combination of methods that consider both pharmacophore- and ligand-based virtual screening. The concept of pharmacophore helps to discover new active compounds and to evaluate their activity. The nature of proteasome inhibitor pharmacophore affects the secondary active-site specificity; indeed, increasing specificity decreases the cytotoxicity of the proteasome inhibitors. It is hypothesized that the balanced simultaneous modulation of a few druggable targets may have superior efficacy and fewer side effects than single-target or combination therapies for the treatment of human cancers. The discovery of new compounds should aim to find more active compounds that improve the compliance of patients.
Collapse
Affiliation(s)
- Chiara Pautasso
- University of Torino, Myeloma Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Division of Hematology , Torino , Italy ;
| | | | | | | |
Collapse
|
8
|
Metcalf R, Scott LM, Daniel KG, Dou QP. Proteasome inhibitor patents (2010 - present). Expert Opin Ther Pat 2014; 24:369-82. [PMID: 24450483 DOI: 10.1517/13543776.2014.877444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over the past 3 years, numerous patents and patent applications have been submitted and published involving compounds designed to inhibit the proteasome. Proteasome inhibition has been of great interest in cancer research since disruption of proteolysis leads to a significant buildup of cytotoxic proteins and activation of apoptotic pathways, particularly in rapidly proliferating cells. The current standards in proteasome inhibition are the only FDA-approved inhibitors, bortezomib and carfilzomib. Although these drugs are quite effective in treating multiple myeloma and other blood tumors, there are shortcomings, including toxicities and resistance. Most of the current patents attempt to improve on existing compounds, by increasing bioavailability and selectivity, while attempting to reduce toxicity. A general categorization of similar compounds was employed to evaluate and compare drug design strategies. AREAS COVERED This review focuses on novel compounds and subsequent analogs developed for proteasome inhibition, used in preventing and treating human cancers. A comprehensive description and categorization of patents related to each type of compound and its derivatives, as well as their uses and efficacies as anticancer agents is included. A review of combination therapy patents has also been included. EXPERT OPINION Although there are many diverse chemical scaffolds being published, there are few patented proteasome inhibitors whose method of inhibition is genuinely novel. Most patents utilize a destructive chemical warhead to attack the catalytic threonine residue of the proteasome active sites. Few patents try to depart from this, emphasizing the need for developing new mechanisms of action and specific targeting.
Collapse
Affiliation(s)
- Rainer Metcalf
- Moffitt Cancer Center, Chemical Biology Core , 12902 Magnolia Dr SRB3, Tampa, FL 33612 , USA
| | | | | | | |
Collapse
|
9
|
Ng CH, Kong SM, Tiong YL, Maah MJ, Sukram N, Ahmad M, Khoo ASB. Selective anticancer copper(ii)-mixed ligand complexes: targeting of ROS and proteasomes. Metallomics 2014; 6:892-906. [DOI: 10.1039/c3mt00276d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ternary copper(ii) complexes 1–4 exhibited anticancer selectivity, as evidenced by MTT assay, % apoptosis, cell cycle arrest, ROS induction and DNA DSBs. Proteasome of cancer cells are also inhibited.
Collapse
Affiliation(s)
- Chew Hee Ng
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- International Medical University
- 57000 Kuala Lumpur, Malaysia
| | - Siew Ming Kong
- Faculty of Science
- Universiti Tunku Abdul Rahman
- 31900 Kampar, Malaysia
| | - Yee Lian Tiong
- School of Postgraduate Studies and Research
- School of Medicine
- International Medical University
- 57000 Kuala Lumpur, Malaysia
| | - Mohd Jamil Maah
- Chemistry Department
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Nurhazwani Sukram
- Molecular Pathology Unit
- Cancer Research Centre
- Institute for Medical Research
- , Malaysia
| | - Munirah Ahmad
- Molecular Pathology Unit
- Cancer Research Centre
- Institute for Medical Research
- , Malaysia
| | - Alan Soo Beng Khoo
- Molecular Pathology Unit
- Cancer Research Centre
- Institute for Medical Research
- , Malaysia
| |
Collapse
|