1
|
Reigada I, Kapp K, Kaudela T, García Soria M, Oksanen T, Hanski L. Tracking Chlamydia - Host interactions and antichlamydial activity in Caenorhabditis elegans. Biomed Pharmacother 2024; 177:116956. [PMID: 38901202 DOI: 10.1016/j.biopha.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The fading efficacy of antibiotics is a growing global health concern due to its life-threatening consequences and increased healthcare costs. Non-genetic mechanisms of antimicrobial resistance, such as those employed by Chlamydia pneumoniae and Chlamydia trachomatis, complicate treatment as these bacteria can enter a non-replicative, persistent state under stress, evading antibiotics and linking to inflammatory conditions. Understanding chlamydial persistence at the molecular level is challenging, and new models for studying Chlamydia-host interactions in vivo are urgently needed. Caenorhabditis elegans offers an alternative given its immune system and numerous orthologues of human genes. This study established C. elegans as an in vivo model for chlamydial infection. Both Chlamydia species reduced the worm's lifespan, their DNA being detectable at three- and six-days post-infection. Azithromycin at its MIC (25 nM) failed to prevent the infection-induced lifespan reduction, indicating a persister phenotype. In contrast, the methanolic extract of Schisandra chinensis berries showed anti-chlamydial activity both in vitro (in THP-1 macrophages) and in vivo, significantly extending the lifespan of infected C. elegans and reducing the bacterial load. Moreover, S. chinensis increased the transcriptional activity of SKN-1 in the worms, but was unable to impact the bacterial load or lifespan in a sek-1 defective C. elegans strain. In summary, this study validated C. elegans as a chlamydial infection model and showcased S. chinensis berries' in vivo anti-chlamydial potential, possibly through SEK/SKN-1 signaling modulation.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Karmen Kapp
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Theresa Kaudela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - María García Soria
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge (San Jorge University), Zaragoza 50830, Spain
| | - Timo Oksanen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
2
|
Taavitsainen E, Kortesoja M, Bruun T, Johansson NG, Hanski L. Assaying Chlamydia pneumoniae Persistence in Monocyte-Derived Macrophages Identifies Dibenzocyclooctadiene Lignans as Phenotypic Switchers. Molecules 2020; 25:E294. [PMID: 31940776 PMCID: PMC7024427 DOI: 10.3390/molecules25020294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/24/2022] Open
Abstract
Antibiotic-tolerant persister bacteria involve frequent treatment failures, relapsing infections and the need for extended antibiotic treatment. The virulence of an intracellular human pathogen C. pneumoniae is tightly linked to its propensity for persistence and means for its chemosensitization are urgently needed. In the current work, persistence of C. pneumoniae clinical isolate CV6 was studied in THP-1 macrophages using quantitative PCR and quantitative culture. A dibenzocyclooctadiene lignan schisandrin reverted C. pneumoniae persistence and promoted productive infection. The concomitant administration of schisandrin and azithromycin resulted in significantly improved bacterial eradication compared to sole azithromycin treatment. In addition, the closely related lignan schisandrin C was superior to azithromycin in eradicating the C. pneumoniae infection from the macrophages. The observed chemosensitization of C. pneumoniae was associated with the suppression of cellular glutathione pools by the lignans, implying to a previously unknown aspect of chlamydia-host interactions. These data indicate that schisandrin lignans induce a phenotypic switch in C. pneumoniae, promoting the productive and antibiotic-susceptible phenotype instead of persistence. By this means, these medicinal plant -derived compounds show potential as adjuvant therapies for intracellular bacteria resuscitation.
Collapse
Affiliation(s)
- Eveliina Taavitsainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (E.T.); (M.K.)
| | - Maarit Kortesoja
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (E.T.); (M.K.)
| | - Tanja Bruun
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (T.B.); (N.G.J.)
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (T.B.); (N.G.J.)
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (E.T.); (M.K.)
| |
Collapse
|
3
|
Li X, Liang QF, Su GY, Wu LY, Lu XX, Wang NL. Current Research of Chlamydial Infection Diseases in China. Chin Med J (Engl) 2018; 131:486-489. [PMID: 29451157 PMCID: PMC5830837 DOI: 10.4103/0366-6999.225063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xue Li
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Qing-Feng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Guan-Yu Su
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Li-Yuan Wu
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xin-Xin Lu
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ning-Li Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| |
Collapse
|
4
|
Karhu E, Isojärvi J, Vuorela P, Hanski L, Fallarero A. Identification of Privileged Antichlamydial Natural Products by a Ligand-Based Strategy. JOURNAL OF NATURAL PRODUCTS 2017; 80:2602-2608. [PMID: 29043803 DOI: 10.1021/acs.jnatprod.6b01052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The obligate intracellular pathogen Chlamydia pneumoniae remains a difficult target for antimicrobial therapy. Owing to the permeability barrier placed by bacterial and host vacuolar membranes, as well as the propensity of the bacterium for persistent infections, treatment failures are common. Despite the urgent need for new antichlamydial compounds, their discovery is challenged by the technically demanding assay procedures and lack of validated targets. An alternative strategy of using naturally occurring compounds and their derivatives against C. pneumoniae is presented. The strategy consists of the application of ligand-based virtual screening to a natural product library of 502 compounds with the ChemGPS-NP chemography tool followed by in vitro antichlamydial assays. The reference set used for the 2D similarity search was constructed of 19 known antichlamydial compounds of plant origin. Based on the similarity screen, 53 virtual hits were selected for in vitro testing. Six compounds (leads) were identified that cause ≥50% C. pneumoniae growth inhibition and showed no impact on host cell viability. The leads fall into completely new antichlamydial chemotypes, one of them being mycophenolic acid (IC50 value 0.3 μM). The outcome indicates that using this flipped, target-independent strategy is useful for facilitating the antimicrobial lead discovery against challenging microbes.
Collapse
Affiliation(s)
- Elina Karhu
- Exploration of Anti-Infectives Research Group, Pharmaceutical Design and Discovery, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Janne Isojärvi
- Bioinformatics, Molecular Plant Biology, Department of Biochemistry, University of Turku , Vatselankatu 2, Turku FI-20500, Finland
| | - Pia Vuorela
- Exploration of Anti-Infectives Research Group, Pharmaceutical Design and Discovery, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Leena Hanski
- Exploration of Anti-Infectives Research Group, Pharmaceutical Design and Discovery, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Adyary Fallarero
- Exploration of Anti-Infectives Research Group, Pharmaceutical Design and Discovery, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Viikinkaari 5E, Helsinki FI-00014, Finland
| |
Collapse
|
5
|
Hanski L, Vuorela P. Lead Discovery Strategies for Identification of Chlamydia pneumoniae Inhibitors. Microorganisms 2016; 4:E43. [PMID: 27916800 PMCID: PMC5192526 DOI: 10.3390/microorganisms4040043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
Throughout its known history, the gram-negative bacterium Chlamydia pneumoniae has remained a challenging target for antibacterial chemotherapy and drug discovery. Owing to its well-known propensity for persistence and recent reports on antimicrobial resistence within closely related species, new approaches for targeting this ubiquitous human pathogen are urgently needed. In this review, we describe the strategies that have been successfully applied for the identification of nonconventional antichlamydial agents, including target-based and ligand-based virtual screening, ethnopharmacological approach and pharmacophore-based design of antimicrobial peptide-mimicking compounds. Among the antichlamydial agents identified via these strategies, most translational work has been carried out with plant phenolics. Thus, currently available data on their properties as antichlamydial agents are described, highlighting their potential mechanisms of action. In this context, the role of mitogen-activated protein kinase activation in the intracellular growth and survival of C. pneumoniae is discussed. Owing to the complex and often complementary pathways applied by C. pneumoniae in the different stages of its life cycle, multitargeted therapy approaches are expected to provide better tools for antichlamydial therapy than agents with a single molecular target.
Collapse
Affiliation(s)
- Leena Hanski
- Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| | - Pia Vuorela
- Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
6
|
Hanski LL, Kapp K, Tiirola TM, Orav A, Vuorela HJ, Püssa T, Vuorela PM. Mint Flavorings from Candies Inhibit the Infectivity of Chlamydia pneumoniae. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The impact of solvent extracts from the distillation water (flavoring extracts) isolated from mint flavored candies on the infectivity of the intracellular bacterium Chlamydia pneumoniae was evaluated by an in vitro model of epithelial cell infections. The mint flavoring extracts were isolated from the candies by simultaneous hydrodistillation and their chemical composition, established by GC-MS, demonstrated menthol and limonene as the most abundant components. Results obtained by treating C. pneumoniae elementary bodies (EBs) with the flavoring extracts or pure reference compounds showed a significant decrease in EB infectivity, achieved with most of the extracts. This antichlamydial activity could be related to the relatively high menthol content of the extracts. Overall, the obtained data indicates that the flavorings present in the candies are able to target the metabolically quiet, non-replicating form of the bacterium and to suppress the spread of this respiratory pathogen from one cell to another.
Collapse
Affiliation(s)
- Leena L. Hanski
- Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| | - Karmen Kapp
- Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| | - Terttu M. Tiirola
- Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| | - Anne Orav
- Institute of Chemistry, Tallinn University of Technology, Tallinn, Estonia
| | - Heikki J. Vuorela
- Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| | - Tõnu Püssa
- Department of Food Hygiene, Estonian University of Life Sciences, Tartu, Estonia
| | - Pia M. Vuorela
- Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Hanski L, Ausbacher D, Tiirola TM, Strøm MB, Vuorela PM. Amphipathic β2,2-Amino Acid Derivatives Suppress Infectivity and Disrupt the Intracellular Replication Cycle of Chlamydia pneumoniae. PLoS One 2016; 11:e0157306. [PMID: 27280777 PMCID: PMC4900588 DOI: 10.1371/journal.pone.0157306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/29/2016] [Indexed: 12/27/2022] Open
Abstract
We demonstrate in the current work that small cationic antimicrobial β2,2-amino acid derivatives (Mw < 500 Da) are highly potent against Chlamydia pneumoniae at clinical relevant concentrations (< 5 μM, i.e. < 3.4 μg/mL). C. pneumoniae is an atypical respiratory pathogen associated with frequent treatment failures and persistent infections. This gram-negative bacterium has a biphasic life cycle as infectious elementary bodies and proliferating reticulate bodies, and efficient treatment is challenging because of its long and obligate intracellular replication cycle within specialized inclusion vacuoles. Chlamydicidal effect of the β2,2-amino acid derivatives in infected human epithelial cells was confirmed by transmission electron microscopy. Images of infected host cells treated with our lead derivative A2 revealed affected chlamydial inclusion vacuoles 24 hours post infection. Only remnants of elementary and reticulate bodies were detected at later time points. Neither the EM studies nor resazurin-based cell viability assays showed toxic effects on uninfected host cells or cell organelles after A2 treatment. Besides the effects on early intracellular inclusion vacuoles, the ability of these β2,2-amino acid derivatives to suppress Chlamydia pneumoniae infectivity upon treatment of elementary bodies suggested also a direct interaction with bacterial membranes. Synthetic β2,2-amino acid derivatives that target C. pneumoniae represent promising lead molecules for development of antimicrobial agents against this hard-to-treat intracellular pathogen.
Collapse
Affiliation(s)
- Leena Hanski
- Pharmaceutical Design and Discovery Research Group, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki (UHEL), Helsinki, Finland
| | - Dominik Ausbacher
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Terttu M. Tiirola
- Pharmaceutical Design and Discovery Research Group, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki (UHEL), Helsinki, Finland
| | - Morten B. Strøm
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Pia M. Vuorela
- Pharmaceutical Design and Discovery Research Group, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki (UHEL), Helsinki, Finland
- * E-mail:
| |
Collapse
|
8
|
Hakala E, Hanski L, Uvell H, Yrjönen T, Vuorela H, Elofsson M, Vuorela PM. Dibenzocyclooctadiene lignans from Schisandra spp. selectively inhibit the growth of the intracellular bacteria Chlamydia pneumoniae and Chlamydia trachomatis. J Antibiot (Tokyo) 2015; 68:609-14. [PMID: 25944533 DOI: 10.1038/ja.2015.48] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/01/2015] [Accepted: 03/23/2015] [Indexed: 01/20/2023]
Abstract
Lignans from Schisandra chinensis berries show various pharmacological activities, of which their antioxidative and cytoprotective properties are among the most studied ones. Here, the first report on antibacterial properties of six dibenzocyclooctadiene lignans found in Schisandra spp. is presented. The activity was shown on two related intracellular Gram-negative bacteria Chlamydia pneumoniae and Chlamydia trachomatis upon their infection in human epithelial cells. All six lignans inhibited C. pneumoniae inclusion formation and infectious progeny production. Schisandrin B inhibited C. pneumoniae inclusion formation even when administered 8 h post infection, indicating a target that occurs relatively late within the infection cycle. Upon infection, lignan-pretreated C. pneumoniae elementary bodies had impaired inclusion formation capacity. The presence and substitution pattern of methylenedioxy, methoxy and hydroxyl groups of the lignans had a profound impact on the antichlamydial activity. In addition our data suggest that the antichlamydial activity is not caused only by the antioxidative properties of the lignans. None of the compounds showed inhibition on seven other bacteria, suggesting a degree of selectivity of the antibacterial effect. Taken together, the data presented support a role of the studied lignans as interesting antichlamydial lead compounds.
Collapse
Affiliation(s)
- Elina Hakala
- Pharmaceutical Biology, CDR, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Leena Hanski
- Pharmaceutical Biology, CDR, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hanna Uvell
- Laboratories for Chemical Biology Umeå, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Teijo Yrjönen
- Pharmaceutical Biology, CDR, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Vuorela
- Pharmaceutical Biology, CDR, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikael Elofsson
- Laboratories for Chemical Biology Umeå, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Pia Maarit Vuorela
- Pharmaceutical Biology, CDR, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|