1
|
Wilk J, Aggarwal V, Pauley M, Corey D, Conrado DJ, Lingineni K, Morales JF, Yoon DY, Zhang Y, Cui Z, Burton J, Larkindale J, Ma SC, Hovinga C, Martinez T, Romero K, Belfiore-Oshan R, Kim S. A computational tool to optimize clinical trial parameter selection in Duchenne muscular dystrophy: A practical guide and case studies. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39600251 DOI: 10.1002/psp4.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Duchenne muscular dystrophy (DMD), a rare pediatric disease, presents numerous challenges when designing clinical trials, mainly due to the scarcity of available trial participants and the heterogeneity of disease progression. A quantitative clinical trial simulator (CTS) has been developed based on previously published five disease progression models describing each of the longitudinal changes in the velocity at which individuals can complete specified timed functional tests, frequently used as clinical trial efficacy endpoints (supine-stand, 4-stair climb, and 10 m walk/run test or 30-foot walk/run test), as well as each of the longitudinal changes in forced vital capacity and North Star Ambulatory Assessment total score. The model-based CTS allows researchers to optimize the selection of numerous trial parameters for designing trials for the five functional measures commonly used as endpoints in DMD clinical trials. This case report serves as a demonstration of the tool's functionality while providing an easy-to-follow guide for users to reference when preparing simulations of their own design. Two case studies, using input selection based on previous DMD clinical trials, provide realistic examples of how the tool can help optimize clinical trial design without the risk of decreasing statistical significance. This optimization allows researchers to mitigate the risk of designing trials that may be longer, larger, or more inclusive/exclusive than necessary.
Collapse
Affiliation(s)
- Jordan Wilk
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Mathematics, College of Sciences, University of Central Florida, Orlando, Florida, USA
| | | | - Mike Pauley
- Critical Path Institute (C-Path), Tucson, Arizona, USA
| | - Diane Corey
- Critical Path Institute (C-Path), Tucson, Arizona, USA
| | | | | | - Juan Francisco Morales
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Critical Path Institute (C-Path), Tucson, Arizona, USA
| | - Deok Yong Yoon
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yi Zhang
- Critical Path Institute (C-Path), Tucson, Arizona, USA
| | - Zihan Cui
- Critical Path Institute (C-Path), Tucson, Arizona, USA
| | | | | | - Shu Chin Ma
- Critical Path Institute (C-Path), Tucson, Arizona, USA
| | | | | | - Klaus Romero
- Critical Path Institute (C-Path), Tucson, Arizona, USA
| | | | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Klimchak AC, Sedita LE, Rodino-Klapac LR, Mendell JR, McDonald CM, Gooch KL, Malone DC. Assessing the value of delandistrogene moxeparvovec (SRP-9001) gene therapy in patients with Duchenne muscular dystrophy in the United States. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2023; 11:2216518. [PMID: 37261034 PMCID: PMC10228300 DOI: 10.1080/20016689.2023.2216518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Background: Delandistrogene moxeparvovec (SRP-9001) is an investigational gene therapy that may delay progression of Duchenne muscular dystrophy (DMD), a severe, rare neuromuscular disease caused by DMD gene mutations. Early cost-effectiveness analyses are important to help contextualize the value of gene therapies for reimbursement decision making. Objective: To determine the potential value of delandistrogene moxeparvovec using a cost-effectiveness analysis. Study design: A simulation calculated lifetime costs and equal value of life years gained (evLYG). Inputs included extrapolated clinical trial results and published utilities/costs. As a market price for delandistrogene moxeparvovec has not been established, threshold analyses established maximum treatment costs as they align with value, including varying willingness-to-pay up to $500,000, accounting for severity/rarity. Setting: USA, healthcare system perspective Patients: Boys with DMD Intervention: Delandistrogene moxeparvovec plus standard of care (SoC; corticosteroids) versus SoC alone Main outcome measure: Maximum treatment costs at a given willingness-to-pay threshold Results: Delandistrogene moxeparvovec added 10.30 discounted (26.40 undiscounted) evLYs. The maximum treatment cost was approximately $5 M, assuming $500,000/evLYG. Varying the benefit discount rate to account for the single administration increased the estimated value to #$5M, assuming $500,000/evLYG. Conclusion: In this early economic model, delandistrogene moxeparvovec increases evLYs versus SoC and begins to inform its potential value from a healthcare perspective.
Collapse
Affiliation(s)
- Alexa C. Klimchak
- Global HEOR, RWE & Analytics, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | - Lauren E. Sedita
- Global HEOR, RWE & Analytics, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | | | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | - Craig M. McDonald
- Department of Pediatrics, University of California Davis School of Medicine, Davis, CA, USA
| | | | - Daniel C. Malone
- College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Iftikhar M, Frey J, Shohan MJ, Malek S, Mousa SA. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol Ther 2020; 220:107719. [PMID: 33130193 DOI: 10.1016/j.pharmthera.2020.107719] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Many neuromuscular diseases are genetically inherited or caused by mutations in motor function proteins. Two of the most prevalent neuromuscular diseases are Duchenne Muscular Dystrophy (DMD) and Spinal Muscular Atrophy (SMA), which are often diagnosed during the early years of life, contributing to life-long debilitation and shorter longevity. DMD is caused by mutations in the dystrophin gene resulting in critical muscle wasting, with cardiac or respiratory failure by age 30. Lack of dystrophin protein is the leading cause of degeneration of skeletal and cardiac muscle. Corticosteroids and artificial respirators remain as the gold-standard management of complications and have significantly extended the life span of these patients. Additionally, drug therapies including eteplirsen (EXONDYS 51®), golodirsen (VYONDYS 53™), and viltolarsen (VILTEPSO®) have been approved by the FDA to treat specific types of DMD. SMA is defined by the degeneration of the anterior horn cells in the spinal cord and destruction of motor neuron nuclei in the lower brain-stem caused by SMN1 gene deletion. Loss of SMN1 protein is partly compensated by SMN2 protein synthesis with disease severity being affected by the success of SMN2 gene synthesis. Evidence-based recommendations for SMA are directed towards supportive therapy and providing adequate nutrition and respiratory assistance as needed. Treatment and prevention of complications of muscle weakness are crucial for reducing the phenotype expression of SMA. Furthermore, drug therapies including injectables such as onasemnogene abeparvovec-xioi (ZOLGENSMA®), nusinersen (SPINRAZA®), and an oral-solution, risdiplam (EVRYSDI™), are medications that have been FDA-approved for the treatment of SMA. This review discusses the current and emerging therapeutic options for patients with DMD and SMA.
Collapse
Affiliation(s)
- Mohsan Iftikhar
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States of America
| | - Justin Frey
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States of America
| | - Md Jasimuddin Shohan
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States of America
| | - Sohail Malek
- Department of Pediatric Neurology, Albany Medical Center, Albany, NY 12208, United States of America
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States of America.
| |
Collapse
|
5
|
Salmaninejad A, Jafari Abarghan Y, Bozorg Qomi S, Bayat H, Yousefi M, Azhdari S, Talebi S, Mojarrad M. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int J Neurosci 2020; 131:370-389. [DOI: 10.1080/00207454.2020.1740218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arash Salmaninejad
- Halal Research Center of IRI, FDA, Tehran, Iran
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abarghan
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bayat
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Yousefi
- Department of Medical Genetics Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Samaneh Talebi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Boulanger Piette A, Hamoudi D, Marcadet L, Morin F, Argaw A, Ward L, Frenette J. Targeting the Muscle-Bone Unit: Filling Two Needs with One Deed in the Treatment of Duchenne Muscular Dystrophy. Curr Osteoporos Rep 2018; 16:541-553. [PMID: 30225627 DOI: 10.1007/s11914-018-0468-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW In Duchenne muscular dystrophy (DMD), the progressive skeletal and cardiac muscle dysfunction and degeneration is accompanied by low bone mineral density and bone fragility. Glucocorticoids, which remain the standard of care for patients with DMD, increase the risk of developing osteoporosis. The scope of this review emphasizes the mutual cohesion and common signaling pathways between bone and skeletal muscle in DMD. RECENT FINDINGS The muscle-bone interactions involve bone-derived osteokines, muscle-derived myokines, and dual-origin cytokines that trigger common signaling pathways leading to fibrosis, inflammation, or protein synthesis/degradation. In particular, the triad RANK/RANKL/OPG including receptor activator of NF-kB (RANK), its ligand (RANKL), along with osteoprotegerin (OPG), regulates bone matrix modeling and remodeling pathways and contributes to muscle pathophysiology in DMD. This review discusses the importance of the muscle-bone unit in DMD and covers recent research aimed at determining the muscle-bone interactions that may eventually lead to the development of multifunctional and effective drugs for treating muscle and bone disorders regardless of the underlying genetic mutations in DMD.
Collapse
Affiliation(s)
- Antoine Boulanger Piette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Dounia Hamoudi
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Françoise Morin
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Leanne Ward
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada.
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
7
|
Bao TL, Veedu RN, Fletcher S, Wilton SD. Antisense oligonucleotide development for the treatment of muscular dystrophies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Concise postsynthetic preparation of oligonucleotide-oligopeptide conjugates through facile disulfide bond formation. Future Med Chem 2015; 7:1657-73. [PMID: 26381134 DOI: 10.4155/fmc.15.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Despite recent advances, major hurdles still need to be cleared for widespread application of therapeutic antisense technologies. In particular, pharmacokinetic properties and efficient cellular uptake need to be improved through chemical derivatization or bioconjugation. RESULTS The 2'-O-thioethylene nucleotide building block affords easy implementation into standard oligonucleotide synthesis protocols and was used to attach oligolysine chains to phosphodiester oligonucleotides by direct reaction with S-sulfonate protected peptides. Efficient gene silencing was induced in a cell culture model after transfection reagent-free application of the conjugates. CONCLUSION A facile optimized procedure for generating oligonucleotide-peptide conjugates was established. The attachment of short basic peptides via a labile linker is sufficient to enhance membrane permeability of oligonucleotides and result in successful gene silencing.
Collapse
|
9
|
miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 2015; 6:1967-84. [PMID: 25495987 DOI: 10.4155/fmc.14.116] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The discovery of miRNAs as important regulatory agents for gene expression has expanded the therapeutic opportunities for oligonucleotides. In contrast to siRNA, miRNA-targeted therapy is able to influence not only a single gene, but entire cellular pathways or processes. It is possible to supplement downregulated or non-functional miRNAs by synthetic oligonucleotides, as well as alleviating effects caused by overexpression of malignant miRNAs through artificial antagonists, either oligonucleotides or small molecules. Chemical oligonucleotide modifications together with an efficient delivery system seem to be mandatory for successful therapeutic application. While miRNA-based therapy benefits from the decades of research spent on other therapeutic oligonucleotides, there are some specific challenges associated with miRNA therapy, mainly caused by the short target sequence. The current status and recent progress of miRNA-targeted therapeutics is described and future challenges and potential applications in treatment of cancer and viral infections are discussed.
Collapse
|
10
|
Tinsley J, Robinson N, Davies KE. Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-arylbenzoxazole utrophin modulator, following single- and multiple-dose administration to healthy male adult volunteers. J Clin Pharmacol 2015; 55:698-707. [PMID: 25651188 PMCID: PMC5024067 DOI: 10.1002/jcph.468] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/22/2015] [Indexed: 11/06/2022]
Abstract
SMT C1100 is a small molecule utrophin modulator in development to treat Duchenne muscular dystrophy. This study evaluated the safety, tolerability, and pharmacokinetics of SMT C1100 in healthy volunteers. This double-blind, placebo-controlled Phase 1 study comprised: Part 1, an escalating, single-dose with/without fasting involving 50 mg/kg, 100 mg/kg, 200 mg/kg, and 400 mg/kg doses; and Part 2, a multiple 10 day dose evaluation involving 100 mg/kg bid and 200 mg/kg bid doses. Adverse events were recorded. SMT C1100 was absorbed rapidly following single and multiple oral doses, with median tmax attained within 2-3.5 hour across all doses. Considerable variability of pharmacokinetic parameters was noted among subjects. Following single doses, systemic exposure increased in a sub-proportional manner, with the 8.0-fold dose increment resulting in 2.7- and 2.4-fold increases in AUC0-∞ and Cmax , respectively. AUC0-∞ and Cmax were estimated as 4.2- and 4.8-fold greater, respectively, following food. Systemic exposure reduced upon repeat dosing with steady-state concentrations achieved within 3-5 days of multiple bid dosing. No serious or severe adverse events were reported. SMT C1100 was safe and well tolerated with plasma concentrations achieved sufficient to cause a 50% increase in concentrations of utrophin in cells in vitro.
Collapse
Affiliation(s)
- Jon Tinsley
- Summit Corporation plc, Abingdon, Oxford, UK
| | | | | |
Collapse
|