1
|
Nitaramorn N, Kobpornchai P, Tongkrajang N, Chaisri U, Imwong M, Kulkeaw K. Human liver organoids are susceptible to Plasmodium vivax infection. Malar J 2024; 23:368. [PMID: 39639330 PMCID: PMC11622667 DOI: 10.1186/s12936-024-05202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The eradication of Plasmodium vivax malaria is complicated due to the presence of hypnozoites, the hidden dormant form of the parasite that is present in the liver. Currently available drug regimens are effective at killing hypnozoites but cause side effects and are difficult to administer. Studies testing drugs for liver-stage malaria remain rare and mainly rely on the use of cancerous or immortalized hepatic cells and primary hepatocytes. METHODS Organoids were used as platform to model liver-stage vivax malaria. Hepatic endoderm cells, endothelial progenitor cells and mesenchymal cells were generated from human induced pluripotent stem cells and self-assembled into liver organoids on top of Matrigel layer. Liver characteristic and maturity were examined through genes and proteins expression of liver markers, and liver functional tests before infected with Plasmodium vivax sporozoites. The infection was then verified by the detection of parasitophorous vacuole membrane proteins, Upregulated in Infectious Sporozoite 4 (UIS4), and blood-stage infection following co-culture with human reticulocytes. RESULTS Generated liver organoids showed upregulation of liver specific transcripts including hepatic nuclear factor 4A (HNF4A), alpha-fetoprotein (AFP), and albumin (ALB) which also confirmed by the protein expression. Furthermore, those organoids resembled mature hepatocytes in terms of albumin secretion, fat and glycogen storage and cytochrome activity. Following invasion of P. vivax sporozoites, PvUIS4 was detected and the hepatic merozoites could develop into ring-stage and early trophozoites in human reticulocytes. Moreover, differential expression patterns of genes involved in lipid and cholesterol synthesis were also detected. CONCLUSIONS Stem cell-derived liver organoids resemble mature liver cells in terms of liver functions and are susceptible to infection with P. vivax sporozoites, paving the way for studies on the mechanism of hypnozoite formation and testing of possible hypnozoitocidal drugs.
Collapse
Affiliation(s)
- Norapat Nitaramorn
- Graduate Program in Biodesign in Medicine, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Porntida Kobpornchai
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj-Long Read Laboratory, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Nongnat Tongkrajang
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Siriraj-Long Read Laboratory, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
3
|
Tang X, Zhang Y, Liu X, Liu M. Application of mesenchymal stem cells in tumor therapy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1444-1453. [PMID: 36411696 PMCID: PMC10930360 DOI: 10.11817/j.issn.1672-7347.2022.220116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 06/16/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that exist widely in the human body, which can self-renewal and differentiate into different types of cell. Due to its advantages of tumor tissue tropism and easy to be engineered, it has been widely used in cancer treatment research recently. However, the tumor-promoting or anti-tumor effect of MSCs is controversial, especially for unmodified MSCs. Therefore, researchers are more inclined to use MSCs as carriers to engineer them. With the deepening in understanding of vesicles, it is found that the vesicles derived from MSCs seem to have greater advantages as carriers. Although the current research of MSCs in the treatment of tumors has been initiated in the clinic, there are still many problems to be solved in the pre-clinical application.
Collapse
Affiliation(s)
- Xiangling Tang
- Genetics Laboratory, College of Life Science, Central South University, Changsha 410078.
| | - Yu Zhang
- Genetics Laboratory, College of Life Science, Central South University, Changsha 410078
| | - Xionghao Liu
- Hunan Key Laboratory of Medical Genetics, Changsha 410078
| | - Mujun Liu
- Hunan Key Laboratory of Basic and Applied Hematology, Changsha 410008, China.
| |
Collapse
|
4
|
Dapkekar AB, Sreenivasulu C, Kishore DR, Satyanarayana G. Recent Advances Towards the Synthesis of Dihydrobenzofurans and Dihydroisobenzofurans. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Gedu Satyanarayana
- Indian Institute of Technology Hyderabad Chemistry KandiSangareddy District 502 285 Hyderabad INDIA
| |
Collapse
|
5
|
Ejtehadifar M, Halabian R, Ghazavi A, Khansarinejad B, Mosayebi G, Imani Fooladi AA. Bone marrow - mesenchymal stem cells impact on the U937 cells in the presence of staphylococcal enterotoxin B (SEB). Clin Exp Pharmacol Physiol 2018; 45:849-858. [PMID: 29655181 DOI: 10.1111/1440-1681.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Abstract
The growing resistance against conventional chemotherapy in acute myeloid leukemia (AML) is a noticeable clinical concern. Therefore, many researchers are looking for novel substances to overcome drug resistance in cancer. Staphylococcal enterotoxin B (SEB) is a superantigen (SAg) and a promising compound which has lethal effects on malignant cells. In this unprecedented study, SEB was used against U937 cells in a co-culture system in the presence of human bone marrow-mesenchymal stem cells (hBM-MSCs). The effects of hBM-MSCs on the proliferation and survival of U937 cell line with SEB was assessed using MTT assay and AnnexinV/PI flowcytometry, respectively. Moreover, the expression of IL-6, IL-10, TGF-β, and inhibitor of nuclear factor kappa-B kinase (IKKb) was evaluated by real-time PCR technique. The same experiments were also carried out using hBM-MSCs-conditioned medium (hBM-MSCs-CM). The results showed that SEB reduced the proliferation and survival of U937 cell line, but hBM-MSCs or hBM-MSCs-CM suppressed the effects of SEB. Furthermore, real-timePCR demonstrated that SEB could decrease the expression of IL-6, IL-10, and TGF-β in hBM-MSCs (P < .05), while the production of IKKb was increased in comparison with the control group. These findings help us to have a broader understanding ofthe usage of SEB in the treatment of haematological malignancies, especially if it is targeted against hBM-MSCs to disrupt their supportive effects on malignant cells.
Collapse
Affiliation(s)
- Mostafa Ejtehadifar
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ghazavi
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.,Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ejtehadifar M, Halabian R, Fooladi AAI, Ghazavi A, Mosayebi G. Anti-cancer effects of Staphylococcal Enterotoxin type B on U266 cells co-cultured with Mesenchymal Stem Cells. Microb Pathog 2017; 113:438-444. [DOI: 10.1016/j.micpath.2017.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 01/14/2023]
|