1
|
Li S, Xuan B, Wong SN, Lee HW, Low KH, Chow SF. Towards the discovery of unrevealed flufenamic acid cocrystals via structural resemblance for enhanced topical drug delivery. Int J Pharm 2025; 668:124959. [PMID: 39550015 DOI: 10.1016/j.ijpharm.2024.124959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Cocrystallization has emerged as a promising formulation strategy for modulating transdermal drug absorption by enhancing solubility and permeability. However, challenges related to cocrystal dissociation in the semi-solid state need to be addressed to mitigate regulatory concerns before the widespread implementation of topical cocrystal products in clinical practice. This study aimed to develop oil-based topical formulations incorporating cocrystals with distinct thermodynamic stabilities, followed by investigating the roles of different structurally similar coformers and oily vehicles on their physicochemical properties. Three pharmaceutical cocrystals of poorly water-soluble flufenamic acid (FFA) were synthesized with isomeric pyridine carboxamides in a 1:1 stoichiometry via rapid solvent removal. These included the reported flufenamic acid-nicotinamide cocrystal (FFA-NIC), the long-elusive flufenamic acid-isonicotinamide cocrystal (FFA-IST) and flufenamic acid-picolinamide cocrystal (FFA-PIC). The resulting cocrystals, which exhibited different hydrogen bonding patterns, were characterized using powder X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, and structural analysis through single crystal X-ray diffraction. The cocrystals were further formulated in a series of oleaginous and absorption bases, including liquid paraffin, Vaseline, lanolin, and theobroma oil, for topical delivery. The cocrystal dissociation, content uniformity, and in vitro membrane diffusion were assessed. Notably, although all FFA cocrystals exhibited thermodynamic instability in aqueous solution, a significantly reduced propensity for cocrystal dissociation was observed in the ointment bases. Integrated computational analyses of packing efficiency and interaction energy revealed that the thermodynamic stability of cocrystals followed a descending order of FFA-NIC > FFA-PIC > FFA-IST. Compared with raw FFA, FFA-IST and FFA-PIC, which had larger positive ΔVnon-H and ΔEcocryst, achieved superior cumulative diffusion of FFA from Vaseline, with a 4.3-fold (p = 0.0003) and 3.3-fold (p = 0.0029) increase at 6 h in a Franz diffusion cell model, respectively. The diffusion of all FFA cocrystals mainly followed the Higuchi kinetic model and was positively correlated with the intrinsic dissolution rate.
Collapse
Affiliation(s)
- Si Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Hok Wai Lee
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kam-Hung Low
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
2
|
Lee J, Noh M, Jang J, Lee JB, Hwang YH, Lee H. Skin Penetration Enhancer-Incorporated Lipid Nanovesicles (SPE-LNV) for Skin Brightening and Wrinkle Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36331-36340. [PMID: 35917318 DOI: 10.1021/acsami.2c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we utilize skin penetration enhancers (SPEs) such as ceramide and fatty acids in lipid nanovesicles to promote the transdermal delivery of active ingredients. These SPE-incorporated lipid nanovesicles (SPE-LNV) interact with the constituents of skin's outermost stratum corneum (SC) layer, enabling even niacinamide and adenosine with high water solubility to effectively permeate through, leading to enhanced skin efficacy. We demonstrate by both in vitro and in vivo skin permeation studies that the SPE-LNV formulation containing both ceramide and fatty acids (LNV-CF) exhibits deeper penetration depth and faster permeation rate compared to conventional lipid nanovesicles (LNV) without SPE as well as LNV-C with only ceramide. Moreover, in vivo clinical trials were also performed to confirm that LNV-CF most effectively mediates the delivery of niacinamide and adenosine, resulting in a substantial decrease in melanin index as well as skin wrinkle compared to the control groups. We envision that the strategy of incorporating both ceramide and fatty acids in lipid nanovesicles offers a simple and convenient route for the rapid and effective delivery of water-soluble active ingredients across the skin barrier layer.
Collapse
Affiliation(s)
- Jihyun Lee
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Minjoo Noh
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Jihui Jang
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Yoon-Ho Hwang
- Department of Chemical Engineering, Soft Matter and Functional Interfaces Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Soft Matter and Functional Interfaces Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, South Korea
| |
Collapse
|
3
|
Akkın S, Varan G, Aksüt D, Malanga M, Ercan A, Şen M, Bilensoy E. A different approach to immunochemotherapy for colon Cancer: Development of nanoplexes of cyclodextrins and Interleukin-2 loaded with 5-FU. Int J Pharm 2022; 623:121940. [PMID: 35724824 DOI: 10.1016/j.ijpharm.2022.121940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022]
Abstract
Immune system deficiencies are crucial in the progression of cancer, predominantly because immune cells are not stimulated by cytokines to eradicate cancer cells. Immunochemotherapy is currently considered an innovative approach that creates pathways in cancer treatment, sometimes also aiding in the efficacy of chemotherapeutics. The aim of this study was to prepare a cyclodextrin (CD) nanoplex based on charge interaction to deliver the anticancer drug 5-fluorouracil (5-FU) and Interleukin-2 (IL-2), thereby forming a nanoscale drug delivery system aimed at chemo-immunotherapy for colorectal cancers. The CD:IL-2 nanoplexes were obtained with a particle size below 100 nm and a cationic surface charge based on the extent of charge interaction of the cationic CD polymer with negatively charged IL-2. The loading capacity of CD nanoplexes was 40% for 5-FU and 99.8% for IL-2. Nanoplexes maintained physical stability in terms of particle size and zeta potential in aqueous solution for 1 week at + 4 °C. Moreover, the structural integrity of IL-2 loaded into CD nanoplexes was confirmed by SDS-PAGE analysis. The cumulative release rates of both 5-FU and IL-2 were found to be more than 80% in simulated biological fluids in 12 h. Cell culture studies demonstrate that CD polymers are safe on healthy L929 mouse fibroblast cells. Drug-loaded CD nanoplexes were determined to have a higher anticancer effect than free drug solution against CT26 mouse colon carcinoma cells. In addition, intestinal permeability studies supported the conclusion that CD nanoplexes could be promising candidates for oral chemotherapy as well. In conclusion, effective cancer therapy utilizing the absorptive/cellular uptake effect of CDs, the synergic effect and co-transport of chemotherapeutic drugs and immunotherapeutic molecules is a promising approach. Furthermore, the transport of IL-2 with this nano-sized system can reduce or avoid its toxicity problem in the clinic.
Collapse
Affiliation(s)
- Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Davut Aksüt
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Milo Malanga
- CycloLab- Cyclodextrin Research & Development Laboratory, Organic Synthesis Laboratory, 1097 Budapest, Hungary
| | - Ayşe Ercan
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Murat Şen
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey.
| |
Collapse
|
4
|
Bashir DJ, Manzoor S, Khan IA, Bashir M, Agarwal NB, Rastogi S, Arora I, Samim M. Nanonization of Magnoflorine-Encapsulated Novel Chitosan-Collagen Nanocapsules for Neurodegenerative Diseases: In Vitro Evaluation. ACS OMEGA 2022; 7:6472-6480. [PMID: 35252643 PMCID: PMC8892656 DOI: 10.1021/acsomega.1c04459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Neurodegeneration is one of the most common diseases in the aged population, characterized by the loss in the function of neuronal cells and their ultimate death. One of the common features in the progression of this type of diseases is the oxidative stress. Drugs which are currently being used have been found to show lateral side effects, which is partly due to their inefficiency to cross blood-brain barrier. Nanoencapsulation of bioactive compounds is a profound approach in this direction and has become a method of choice nowadays. This study involved the evaluation of the anti-oxidative properties of magnoflorine (MF), which is an aporphine quaternary alkaloid, and synthesis of MF-loaded chitosan-collagen nanocapsules (MF-CCNc) for its better efficacy as a potent anti-oxidant. Physiochemical characterization of the synthesized nanocapsules was done by using dynamic light scattering and transmission electron microscopy. It revealed that the synthesized nanocapsules are of small size range, as small as 12 ± 2 nm, and are more or less of spherical shape. Sustained release was shown by MF in the in vitro drug release studies. Both MF and MF-CCNc were found to have good anti-oxidant potential with IC50 < 25 μg/mL. No major cytotoxicity was shown by the synthesized nanocapsules on SH-SY5Y cells. In silico anti-acetylcholinesterase (AChE) studies were also done, and they revealed that MF can be a potent inhibitor of AChE.
Collapse
Affiliation(s)
- Dar Junaid Bashir
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saliha Manzoor
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Imran A. Khan
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Masarat Bashir
- COTS,
Mirgund, SKUAST Kashmir, Shalimar, Srinagar, Jammu and Kashmir 193121, India
| | - Nidhi Bharal Agarwal
- Centre
for Translational and Clinical Research, Jamia Hamdrad, New Delhi 110062, India
| | - Shweta Rastogi
- Department
of Chemistry, Hansraj College, Delhi University, Delhi 110007, India
| | - Indu Arora
- Department
of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences
for Women, Delhi University, New Delhi 110096, India
| | - Mohammed Samim
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
5
|
Miles CE, Gwin C, Zubris KAV, Gormley AJ, Kohn J. Tyrosol Derived Poly(ester-arylate)s for Sustained Drug Delivery from Microparticles. ACS Biomater Sci Eng 2021; 7:2580-2591. [PMID: 34010557 DOI: 10.1021/acsbiomaterials.1c00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
New biodegradable polymers are needed for use in drug delivery systems to overcome the high burst release, lack of sustained drug release, and acidic degradation products frequently observed in current formulations. Commercially available poly(lactide-co-glycolide) (PLGA) is often used for particle drug release formulations; however, it is often limited by its large burst release and acidic degradation products. Therefore, a biocompatible and biodegradable tyrosol-derived poly(ester-arylate) library has been used to prepare a microparticle drug delivery system which shows sustained delivery of hydrophobic drugs. Studies were performed using polymers with varying hydrophilicity and thermal properties and compared to PLGA. Various drug solubilizing cosolvents were used to load model drugs curcumin, dexamethasone, nicotinamide, and acyclovir. Hydrophobic drugs curcumin and dexamethasone were successfully loaded up to 50 weight percent (wt %), and a linear correlation between drug wt % loaded and the particle glass transition temperature (Tg) was observed. Both curcumin and dexamethasone were visible on the particle surface at 20 wt % loading and higher. By adjusting the polymer concentration during particle formation, release rates were able to be controlled. Release studies of dexamethasone loaded particles with a lower polymer concentration showed a biphasic release profile and complete release after 47 days. Particles prepared using a higher polymer concentration showed sustained release for up to 77 days. Comparably, PLGA showed a traditional triphasic release profile and complete release after 63 days. This novel tyrosol-derived poly(ester-arylate) library can be used to develop injectable, long-term release formulations capable of providing sustained drug delivery.
Collapse
Affiliation(s)
- Catherine E Miles
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Christine Gwin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kimberly Ann V Zubris
- Lubrizol Life Science Health, 3894 Courtney Street, Bethlehem, Pennsylvania 18017, United States
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
6
|
Preparation, optimization, and transcorneal permeability study of lutein-loaded solid lipid nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Methotrexate and Curcumin co-encapsulated PLGA nanoparticles as a potential breast cancer therapeutic system: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2019; 184:110515. [DOI: 10.1016/j.colsurfb.2019.110515] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023]
|
8
|
Dara T, Vatanara A, Nabi Meybodi M, Vakilinezhad MA, Malvajerd SS, Vakhshiteh F, Shamsian A, Sharifzadeh M, Kaghazian H, Mosaddegh MH. Erythropoietin-loaded solid lipid nanoparticles: Preparation, optimization, and in vivo evaluation. Colloids Surf B Biointerfaces 2019; 178:307-316. [DOI: 10.1016/j.colsurfb.2019.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 01/15/2023]
|
9
|
Ghate VM, Kodoth AK, Raja S, Vishalakshi B, Lewis SA. Development of MART for the Rapid Production of Nanostructured Lipid Carriers Loaded with All-Trans Retinoic Acid for Dermal Delivery. AAPS PharmSciTech 2019; 20:162. [PMID: 30989451 DOI: 10.1208/s12249-019-1307-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
All-trans retinoic acid (ATRA) has been regarded as a wonder drug for many dermatological complications; however, its application is limited due to the extreme irritation, and toxicity seen once it has sufficiently concentrated into the bloodstream from the skin. Thus, the present study was aimed to increase the entrapment of ATRA and minimize its transdermal permeation. ATRA incorporated within nanostructured lipid carriers (NLCs) were produced by a green and facile thin lipid-film based microwave-assisted rapid technique (MART). The optimization was carried out using the response surface methodology (RSM)-driven artificial neural network (ANN) coupled with genetic algorithm (GA). The liquid lipid and surfactants were seen to play a very crucial role culminating in the particle size (< 70 nm), zeta potential (< - 32 mV), and entrapment of ATRA (> 98%). ANN-GA-optimized NLCs required a minimal quantity of the surfactants, formed within 2 min and were stable for 1 year at different storage conditions. The optimized NLC-loaded creams showed a skin retention (ex vivo) to an extent of 87.42% with no detectable drug in the receptor fluid (24 h) in comparison to the marketed cream which released 47.32% (12 h) of ATRA. The results were in good correlation with the in vivo skin deposition studies. The NLCs were biocompatible and non-skin irritant based on the primary irritation index. In conclusion, the NLCs were seen to have a very high potential in overcoming the drawbacks of ATRA for dermal delivery and could be produced conveniently by the MART.
Collapse
|
10
|
Vakilinezhad MA, Amini A, Akbari Javar H, Baha'addini Beigi Zarandi BF, Montaseri H, Dinarvand R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer's disease animal model by reducing Tau hyperphosphorylation. ACTA ACUST UNITED AC 2018; 26:165-177. [PMID: 30386982 PMCID: PMC6279660 DOI: 10.1007/s40199-018-0221-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nicotinamide is considered to be effective in halting the Alzheimer's disease progression. The body could absorb a limited amount of nicotinamide at a time, requiring multiple doses through a day. To overcome such an obstacle which reduces the patient compliance, a sustained/controlled delivery system could be useful. METHOD Nicotinamide loaded solid lipid nanoparticles (SLN) were prepared and functionalized with polysorbate 80 (S80), phosphatidylserine (PS) or phosphatidic acid (PA). The acquired particles were characterized and evaluated in respect of their cytotoxicity, biodistribution, and in vivo effectiveness through the different routes of administration. RESULTS The optimum sizes of 112 ± 1.6 nm, 124 ± 0.8 nm, and 137 ± 1.05 nm were acquired for S80-, PS-, and PA-functionalized SLNs, respectively. The in vitro cytotoxicity on SH-SY5Y cell line showed the safety of formulations except for S80-functionalized SLNs. Biodistribution study of SLNs has proved the benefits of functionalization in improving the brain delivery. The results of spatial and memory test, i.e. Morris water maze, and also histopathology and biochemical tests demonstrated the effectiveness of i.p. injection of PS -functionalized SLNs in improving the cognition, preserving the neuronal cells and reducing tau hyperphosphorylation in a rat model of Alzheimer's disease. CONCLUSION The acquired PS-functionalized SLN could be a potential brain delivery system. Loaded with nicotinamide, an HDAC inhibitor, it could ameliorate the cognition impairment of rats more effectively than the conventional administration of nicotinamide, i.e. oral, in the early stage of Alzheimer's disease. Graphical abstract ᅟ.
Collapse
Affiliation(s)
| | - Azadeh Amini
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hashem Montaseri
- Department of Quality control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|