1
|
Boulaki V, Efthimiopoulos S, Moschonas NK, Spyrou GΜ. Exploring potential key genes and disease mechanisms in early-onset genetic epilepsy via integrated bioinformatics analysis. Neurobiol Dis 2025; 210:106888. [PMID: 40180227 DOI: 10.1016/j.nbd.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Epilepsy is a severe common neurological disease affecting all ages. Epilepsy with onset before the age of 5 years, designated early-onset epilepsy (EOE), is of special importance. According to previous studies, genetic factors contribute significantly to the pathogenesis of EOE that remains unclear and must be explored. So, a list of 229 well-selected EOE-associated genes expressed in the brain was created for the investigation of genetic factors and molecular mechanisms involved in its pathogenesis. Enrichment analysis showed that among significant pathways were nicotine addiction, GABAergic synapse, synaptic vesicle cycle, regulation of membrane potential, cholinergic synapse, dopaminergic synapse, and morphine addiction. Performing an integrated analysis as well as protein-protein interaction network-based approaches with the use of GO, KEGG, ClueGO, cytoHubba and 3 network metrics, 12 hub genes were identified, seven of which, CDKL5, GABRA1, KCNQ2, KCNQ3, SCN1A, SCN8A and STXBP1, were identified as key genes (via Venn diagram analysis). These key genes are mostly enriched in SNARE interactions in vesicular transport, regulation of membrane potential and synaptic vesicle exocytosis. Clustering analysis of the PPI network via MCODE showed significant functional modules, indicating also other pathways such as N-Glycan biosynthesis and protein N-linked glycosylation, retrograde endocannabinoid signaling, mTOR signaling and aminoacyl-tRNA biosynthesis. Drug-gene interaction analysis identified a number of drugs as potential medications for EOE, among which the non-FDA approved drugs azetukalner (under clinical development), indiplon and ICA-105665 and the FDA approved drugs retigabine, ganaxolone and methohexital.
Collapse
Affiliation(s)
- Vasiliki Boulaki
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras 26500, Greece; Metabolic Engineering &Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - George Μ Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
| |
Collapse
|
2
|
Meli N, Sheran K, Pitsch J, Krabbe S, Borger V, Baumgartner T, Becker A, Blaess S. Alterations in dopaminergic innervation and receptors in focal cortical dysplasia. Brain 2025:awaf080. [PMID: 40235315 DOI: 10.1093/brain/awaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 04/17/2025] Open
Abstract
Focal cortical dysplasia (FCD) type 2 is the most common malformation of cortical development associated with pharmaco-resistant focal epilepsy and frequently located in the frontal cortex. Neuropathological hallmarks comprise abnormal cortical layering and enlarged, dysmorphic neuronal elements. Fundamentally altered local neuronal activity has been reported in human FCD type 2 epilepsy surgical biopsies. Of note, FCD type 2 emerges during brain development and forms complex connectivity architectures with surrounding neuronal networks. Local cortical microcircuits, particularly in frontal localization, are extensively modulated by monoaminergic axonal projections originating from the brainstem. Previous analysis of monoaminergic modulatory inputs in human FCD type 2 biopsies suggested altered density and distribution of these monoaminergic axons; however, a systematic investigation is still pending. Here, we perform a comprehensive analysis of dopaminergic (DA) innervation, in human FCD type 2 biopsies and in the medial prefrontal cortex (mPFC) of an FCD type 2 mouse model [mechanistic target of rapamyin (mTOR) hyperactivation model] during adolescent and adult stages. In addition, we analyse the expression of dopamine receptor transcripts via multiplex fluorescent RNA in situ hybridization in human specimens and the mPFC of this mouse model. In the mTOR hyperactivation mouse model, we observe a transient alteration of DA innervation density during adolescence and a trend towards decreased innervation in adulthood. In human FCD type 2 areas, the overall DA innervation density is decreased in adult patients compared with control areas from these patients. Moreover, the DA innervation shows an altered lamination pattern in the FCD type 2 area compared with the control area. Dopamine receptors 1 and 2 appear to be differentially expressed in the dysmorphic neurons in human samples and mTOR-mutant cells in mice compared with normally developed neurons. Intriguingly, our results suggest complex molecular and structural alterations putatively inducing impaired DA neurotransmission in FCD type 2. We hypothesize that this may have important implications for the development of these malformations and the manifestation of seizures.
Collapse
Affiliation(s)
- Norisa Meli
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
- Institute for Cellular Neurosciences II, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| | - Katherine Sheran
- German Center for Neurodegenerative Diseases (DZNE), D-53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Sabine Krabbe
- German Center for Neurodegenerative Diseases (DZNE), D-53127 Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany
| | - Tobias Baumgartner
- Department of Epileptology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Albert Becker
- Institute for Cellular Neurosciences II, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| |
Collapse
|
3
|
Su C, Zhang L, Pan Y, Jiao J, Luo P, Chang X, Zhang H, Si X, Chen W, Huang Y. Enhancing aggression in Henan gamecocks via augmentation of serotonergic-dopaminergic signaling and attenuation of neuroimmune response. Poult Sci 2024; 103:104055. [PMID: 39190992 PMCID: PMC11395772 DOI: 10.1016/j.psj.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Animal aggression is one of the most conserved behaviors. Excessive and inappropriate aggression was a serious social concern across species. After long-term selection under strict stress conditions, Henan gamecock serves as a good model for studying aggressive behavior. In this research, we constructed a Henan game chicken backcross population containing 25% Rhode Island Red (RIR), and conducted brain transcriptomics and serum metabolomics analyses on Henan gamecock (HGR) through its comparison with its female encounters (HGH) and the male backcross birds (BGR). The study revealed that seven differential metabolites in serum and 172 differentially expressed genes in the brain were commonly shared in both HGR vs. HGH and HGR vs. BGR comparisons. They exhibited the same patterns of modulation in Henan gamecocks, following either HGH < HGR > BGR or HGH > HGR < BGR style. Therein, some neurological genes involving in serotonergic and dopaminergic signaling were upregulated, while the levels of many genes related with neuro-immune function were decreased in Henan gamecock. In addition, many unknown genes specifically or highly expressed in the brain of the Henan gamecock were identified. These genes are potentially key candidates for enhancing the bird's aggression. Multi-omics joint analysis revealed that tyrosine metabolism and neuroactive ligand-receptor interaction were commonly affected. Overall, our results propose that the aggressiveness of Henan gamecocks can be heightened by the activation of the serotonergic-dopaminergic metabolic process in the brain, which concurrently impairs the neuroimmune system. Further research is needed to identify the function of these unknown genes on the bird's aggressive behavior.
Collapse
Affiliation(s)
- Chuanchen Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Lin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Yuxian Pan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Jingya Jiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Xinghai Chang
- Henan Changxing Agriculture and Animal Husbandry co., LTD, Kaifeng, Henan 475000, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China.
| |
Collapse
|
4
|
Ryazanova MA, Plekanchuk VS, Prokudina OI, Makovka YV, Alekhina TA, Redina OE, Markel AL. Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines 2023; 11:1814. [PMID: 37509453 PMCID: PMC10376947 DOI: 10.3390/biomedicines11071814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Research into genetic and physiological mechanisms of widespread disorders such as arterial hypertension as well as neuropsychiatric and other human diseases is urgently needed in academic and practical medicine and in the field of biology. Nevertheless, such studies have many limitations and pose difficulties that can be overcome by using animal models. To date, for the purposes of creating animal models of human pathologies, several approaches have been used: pharmacological/chemical intervention; surgical procedures; genetic technologies for creating transgenic animals, knockouts, or knockdowns; and breeding. Although some of these approaches are good for certain research aims, they have many drawbacks, the greatest being a strong perturbation (in a biological system) that, along with the expected effect, exerts side effects in the study. Therefore, for investigating the pathogenesis of a disease, models obtained using genetic selection for a target trait are of high value as this approach allows for the creation of a model with a "natural" manifestation of the pathology. In this review, three rat models are described: ISIAH rats (arterial hypertension), GC rats (catatonia), and PM rats (audiogenic epilepsy), which are developed by breeding in the Laboratory of Evolutionary Genetics at the Institute of Cytology and Genetics (the Siberian Branch of the Russian Academy of Sciences).
Collapse
Affiliation(s)
- Marina A Ryazanova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladislava S Plekanchuk
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I Prokudina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yulia V Makovka
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatiana A Alekhina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga E Redina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Arcady L Markel
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
DNA Methylation Description of Hippocampus, Cortex, Amygdala, and Blood of Drug-Resistant Temporal Lobe Epilepsy. Mol Neurobiol 2023; 60:2070-2085. [PMID: 36602701 DOI: 10.1007/s12035-022-03180-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Epigenetic changes such as DNA methylation were observed in drug-resistant temporal lobe epilepsy (DR-TLE), a disease that affects 25-30% of epilepsy patients. The main objective is to simultaneously describe DNA methylation patterns associated with DR-TLE in hippocampus, amygdala, surrounding cortex to the epileptogenic zone (SCEZ), and peripheral blood. An Illumina Infinium MethylationEPIC BeadChip array was performed in 19 DR-TLE patients and 10 postmortem non-epileptic controls. Overall, 32, 59, and 3210 differentially methylated probes (DMPs) were associated with DR-TLE in the hippocampus, amygdala, and SCEZ, respectively. These DMP-affected genes were involved in neurotrophic and calcium signaling in the hippocampus and voltage-gated channels in SCEZ, among others. One of the hippocampus DMPs (cg26834418 (CHORDC1)) showed a strong blood-brain correlation with BECon and IMAGE-CpG, suggesting that it could be a potential surrogate peripheral biomarker of DR-TLE. Moreover, in three of the top SCEZ's DMPs (SHANK3, SBF1, and MCF2L), methylation status was verified with methylation-specific qPCR. The differentially methylated CpGs were classified in DMRs: 2 in the hippocampus, 12 in the amygdala, and 531 in the SCEZ. We identified genes that had not been associated to DR-TLE so far such as TBX5, EXOC7, and WRHN. The area with more DMPs associated with DR-TLE was the SCEZ, some of them related to voltage-gated channels. The DMPs found in the amygdala were involved in inflammatory processes. We also found a potential surrogate peripheral biomarker of DR-TLE. Thus, these results provide new insights into epigenetic modifications involved in DR-TLE.
Collapse
|
6
|
Tang C, Ren P, Ma K, Li S, Wang X, Guan Y, Zhou J, Li T, Liang X, Luan G. The correspondence between morphometric MRI and metabolic profile in Rasmussen's encephalitis. Neuroimage Clin 2022; 33:102918. [PMID: 34952352 PMCID: PMC8713113 DOI: 10.1016/j.nicl.2021.102918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
The GM atrophy located in the insular and temporal cortices of the affected side. Positive correlation was found in the brain region featuring MRI atrophy and FDG-PET. GM atrophy was spatially correlated with dopaminergic and serotonergic mapping in RE.
Volumetric magnetic resonance imaging (MRI) atrophy is a hallmark of Rasmussen’s encephalitis (RE). Here, we aim to investigate voxel-wise gray matter (GM) atrophy in RE, and its associations with glucose hypometabolism and neurotransmitter distribution utilizing MRI and PET data. In this study, fifteen RE patients and fourteen MRI normal subjects were included in this study. Voxel-wise GM volume and glucose metabolic uptake were evaluated using structural MRI and FDG-PET images, respectively. Spatial Spearman’s correlation was performed between GM atrophy of RE with FDG uptake alterations, and neurotransmitter distributions provided in the JuSpace toolbox. Compared with the control group, RE patients displayed extensive GM volume loss not only in the ipsilateral hemisphere, but also in the frontal lobe, basal ganglia, and cerebellum in the contralateral hemisphere. Within the RE group, the insular and temporal cortices exhibited significantly more GM atrophy on the ipsilesional than the contralesional side. FDG-PET data revealed significant hypometabolism in areas surrounding the insular cortices in the ipsilesional hemisphere. RE-related GM volumetric atrophy was spatially correlated with hypomebolism in FDG uptake, and with spatial distribution of the dopaminergic and serotonergic neurotransmitter systems. The spatial concordance of morphological changes with metabolic abnormalities suggest FDG-PET offers potential value for RE diagnosis. The GM alterations associated with neurotransmitter distribution map could provide novel insight in understanding the neuropathological mechanisms and clinical feature of RE.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Peng Ren
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiqiang Ma
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Siyang Li
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiongfei Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jian Zhou
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China; Key Laboratory of Epilepsy, Beijing 100093, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China
| | - Xia Liang
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China.
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China; Key Laboratory of Epilepsy, Beijing 100093, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China.
| |
Collapse
|
7
|
Takano T. Self-injury as a predominant challenging behavior in epilepsy: A study in a residential facility for profoundly disabled patients. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 120:104149. [PMID: 34922088 DOI: 10.1016/j.ridd.2021.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The association between challenging behavior (CB) and epilepsy in people with intellectual disability (ID) remains largely controversial. AIM To clarify the correlation between CB and epilepsy, we investigated the clinical characteristics of CB in both people with and without epilepsy among individuals with ID hospitalized in our residential facility. METHODS AND PROCEDURES A total of 63 individuals with CB was retrospectively investigated using the Behavior Problems Inventory, and the following items were collected from the medical records: sex, age, hospitalization period, etiology and risk factors, level of ID, type of CB, administration of psychotropic drugs, presence or absence of epilepsy and clinical features of epilepsy. OUTCOMES AND RESULTS Almost all individuals with CB showed profound ID. There was no significant difference in the rate of CB between people with and without epilepsy. A type analysis of CB revealed that self-injurious behavior was observed more frequently in epilepsy cases (66.7 %) than in cases without epilepsy (36.4 %) (p = 0.015), and self-injurious behavior was the predominant clinical form in people with epilepsy among the three subgroups of CB (self-injurious, aggressive and self-injurious and aggressive behavior). CONCLUSIONS AND IMPLICATIONS The high incidence of self-injurious behavior in epilepsy with profound disabilities may imply the presence of common pathological basis of self-injurious behavior and epilepsy.
Collapse
Affiliation(s)
- Tomoyuki Takano
- Department of Pediatrics, Biwako-Gakuen Medical and Welfare Center of Yasu, 978-2 Kitazakura, Yasu, 520-2321, Japan; Department of Pediatrics, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, 520-2192, Japan.
| |
Collapse
|
8
|
Singh KD, Osswald M, Ziesenitz VC, Awchi M, Usemann J, Imbach LL, Kohler M, García-Gómez D, van den Anker J, Frey U, Datta AN, Sinues P. Personalised therapeutic management of epileptic patients guided by pathway-driven breath metabolomics. COMMUNICATIONS MEDICINE 2021; 1:21. [PMID: 35602217 PMCID: PMC9053280 DOI: 10.1038/s43856-021-00021-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Therapeutic management of epilepsy remains a challenge, since optimal systemic antiseizure medication (ASM) concentrations do not always correlate with improved clinical outcome and minimal side effects. We tested the feasibility of noninvasive real-time breath metabolomics as an extension of traditional therapeutic drug monitoring for patient stratification by simultaneously monitoring drug-related and drug-modulated metabolites. METHODS This proof-of-principle observational study involved 93 breath measurements of 54 paediatric patients monitored over a period of 2.5 years, along with an adult's cohort of 37 patients measured in two different hospitals. Exhaled breath metabolome of epileptic patients was measured in real time using secondary electrospray ionisation-high-resolution mass spectrometry (SESI-HRMS). RESULTS We show that systemic ASM concentrations could be predicted by the breath test. Total and free valproic acid (VPA, an ASM) is predicted with concordance correlation coefficient (CCC) of 0.63 and 0.66, respectively. We also find (i) high between- and within-subject heterogeneity in VPA metabolism; (ii) several amino acid metabolic pathways are significantly enriched (p < 0.01) in patients suffering from side effects; (iii) tyrosine metabolism is significantly enriched (p < 0.001), with downregulated pathway compounds in non-responders. CONCLUSIONS These results show that real-time breath analysis of epileptic patients provides reliable estimations of systemic drug concentrations along with risk estimates for drug response and side effects.
Collapse
Affiliation(s)
- Kapil Dev Singh
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Martin Osswald
- grid.7400.30000 0004 1937 0650University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victoria C. Ziesenitz
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Mo Awchi
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jakob Usemann
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Lukas L. Imbach
- grid.7400.30000 0004 1937 0650University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- grid.7400.30000 0004 1937 0650University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Diego García-Gómez
- grid.11762.330000 0001 2180 1817Department of Analytical Chemistry, University of Salamanca, Salamanca, Spain
| | - Johannes van den Anker
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Urs Frey
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Alexandre N. Datta
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Pablo Sinues
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Durens M, Soliman M, Millonig J, DiCicco-Bloom E. Engrailed-2 is a cell autonomous regulator of neurogenesis in cultured hippocampal neural stem cells. Dev Neurobiol 2021; 81:724-735. [PMID: 33852756 DOI: 10.1002/dneu.22824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/07/2022]
Abstract
Abnormalities in genes that regulate early brain development are known risk factors for neurodevelopmental disorders. Engrailed-2 (En2) is a homeodomain transcription factor with established roles in cerebellar patterning. En2 is highly expressed in the developing mid-hindbrain region, and En2 knockout (KO) mice exhibit major deficits in mid-hindbrain structures. However, En2 is also expressed in forebrain regions including the hippocampus, but its function is unknown. Previous studies have shown that the hippocampus of En2-KO mice exhibits reductions in its volume and cell numbers due to aberrant neurogenesis. Aberrant neurogenesis is due, in part, to noncell autonomous effects, specifically, reductions of innervating norepinephrine fibers from the locus coeruleus. In this study, we investigate possible cell autonomous roles of En2 in hippocampal neurogenesis. We examine proliferation, survival, and differentiation using cultures of hippocampal neurospheres of P7 wild-type (WT) and En2-KO hippocampal neural progenitor cells (NPCs). At 7 days, En2-KO neurospheres were larger on average than WT spheres and exhibited 2.5-fold greater proliferation and 2-fold increase in apoptotic cells, similar to in vivo KO phenotype. Further, En2-KO cultures exhibited 40% less cells with neurite projections, suggesting decreased differentiation. Lastly, reestablishing En2 expression in En2-KO NPCs rescued excess proliferation. These results indicate that En2 functions in hippocampal NPCs by inhibiting proliferation and promoting survival and differentiation in a cell autonomous manner. More broadly, this study suggests that En2 impacts brain structure and function in diverse regions outside of the mid-hindbrain.
Collapse
Affiliation(s)
- Madel Durens
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mai Soliman
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - James Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Feng J, Hao Z, Zhang X, Li M, zhong W, Zhang C, Gharawi A, Alrashood ST, Khan HA. Effect of thiamazole on kainic acid-induced seizures in mice. Saudi J Biol Sci 2021; 28:1840-1846. [PMID: 33732070 PMCID: PMC7938111 DOI: 10.1016/j.sjbs.2020.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023] Open
Abstract
Kainic acid (KA) induced epileptic seizures in mice is a commonly used experimental model of epilepsy. Previous studies have suggested the roles of various neurotransmitters and oxidative stress in KA-induced seizures. An important role of hypothyroidism has also been suggested in epilepsy. Thiamazole (TZ) is an anti-hyperthyroid drug with antioxidant property. This study reports the effect of TZ on KA-induced epileptic seizures in mice, produced by intraperitoneal (IP) injection of KA (18 mg/kg). Prior to KA injection, the animals were treated with TZ (12.5, 25 and 50 mg/kg IP). Our results showed that in KA alone group, about half of the animals developed seizures. Pre-treatment of mice with TZ significantly increased the frequency of seizures in dose-dependent manner. Administration of TZ significantly reduced the latency time and aggravated the severity of seizures. TZ also increased the mortality in KA-treated mice. Striatal dopamine and serotonin levels were markedly increased in KA alone treated mice, which were not significantly affected by TZ treatment. Among the indices of oxidative stress, we observed a significant reduction in cerebral vitamin E whereas the levels of cerebral malondialdehyde and conjugated dienes were significantly increased in animals with high severity of seizures. In conclusion, TZ potentiated the frequency and severity of experimental seizure in mice. There is a possibility of altered metabolism of KA in presence of TZ that might have potentiated the toxicity of KA. These findings suggest a caution while administering anti-hyperthyroid drugs in epileptic seizures.
Collapse
Affiliation(s)
- Jigao Feng
- Department of Neurosurgery, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 571199, China
| | - Zheng Hao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xian Zhang
- Department of ICU, The First People's Hospital of Huaihua City, Huaihua, Hunan 418000, China
| | - Mingxia Li
- Department of Neurology, The First People's Hospital of Huaihua City, Huaihua, Hunan 418000, China
| | - Wuzhao zhong
- Department of Neurosurgery, Nanchang 334 Hospital, Nanchang, Jiangxi 330024, China
| | - Caicai Zhang
- Department of Physiology, Hainan Medical University (Joint Laboratory for Neuroscience, Hainan Medical University), Haikou, Hainan 570311, China
| | - Ali Gharawi
- Department of Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Sara T. Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Petrucci AN, Joyal KG, Purnell BS, Buchanan GF. Serotonin and sudden unexpected death in epilepsy. Exp Neurol 2020; 325:113145. [PMID: 31866464 PMCID: PMC7029792 DOI: 10.1016/j.expneurol.2019.113145] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
12
|
Shen J, Li DL, Tan XX, Tao WW, Xie CJ, Shi XG, Wang Y. A transcranial sonography study of brainstem and its association with depression in idiopathic generalized epilepsy with tonic-clonic seizures. Epilepsy Behav 2020; 102:106589. [PMID: 31726317 DOI: 10.1016/j.yebeh.2019.106589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 09/22/2019] [Indexed: 01/18/2023]
Abstract
Brainstem raphe (BR) hypoechogenicity in transcranial sonography (TCS) has been depicted in patients with depression. But, up to date, the association of BR alterations in TCS with depression in patients with epilepsy has never been reported. This study was to investigate the possible role of BR examination via TCS in patients with idiopathic generalized epilepsy with tonic-clonic seizures (IGE-TCS) and depression. Forty-six patients with IGE-TCS and 45 healthy controls were recruited. Echogenicity of the caudate nuclei (CN), lentiform nuclei (LN), substantia nigra (SN), and BR and widths of the lateral ventricle (LV) frontal horns and the third ventricle (TV) were assessed via TCS. The determination of depression was based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV), and depression severity measured by Chinese version Neurological Disorders Depression Inventory for Epilepsy (C-NDDI-E) and Beck Depression Inventory-II (BDI-II). The width of TV in patients with epilepsy was found significantly larger than that in healthy controls (p = 0.001), but there was no significant difference in TV width between patients with IGE-TCS with and without depression. There were no significant differences between patients with IGE-TCS and healthy controls in LV frontal horn width, as well as in SN, CN, LN, and BR echogenicity. Here, it seems that patients with IGE-TCS were detected with smaller SN echogenic area compared with controls though they had no statistical significance. Patients with IGE-TCS with hypoechogenic BR had significantly higher C-NDDI-E and BDI-II scores than those with normal BR signal, and most patients with IGE-TCS with depression exhibited hypoechogenic BR, but few patients with IGE-TCS without depression exhibited hypoechogenic BR. In conclusion, BR echogenic signal alterations in TCS can be a biomarker for depression in epilepsy, but it might not be associated with epilepsy itself. The alterations of SN echogenic area and TV width in TCS may reflect a potential role of SN and diencephalon structure in the pathogenesis of epilepsy, which needs to be further elucidated.
Collapse
Affiliation(s)
- Jie Shen
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Dong-Lin Li
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Xiu-Xiu Tan
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Wei-Wei Tao
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Cheng-Juan Xie
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Xue-Gong Shi
- Department of Echocardiography, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Yu Wang
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China; Department of Neurology, the Fourth Affiliated Hospital of Anhui Medical University, Huaihai Avenue 100, Hefei 230000, China.
| |
Collapse
|
13
|
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T. Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs 2019; 33:755-770. [PMID: 31313139 DOI: 10.1007/s40263-019-00650-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Up to 40% of patients with epilepsy experience seizures despite treatment with antiepileptic drugs; however, branched-chain amino acid (BCAA) supplementation has shown promise in treating refractory epilepsy. OBJECTIVES The purpose of this systematic review was to evaluate all published studies that investigated the effects of BCAAs on seizures, emphasizing therapeutic efficacy and possible underlying mechanisms. METHODS On 31 January, 2017, the following databases were searched for relevant studies: MEDLINE (OvidSP), EMBASE (OvidSP), Scopus (Elsevier), the Cochrane Library, and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health). The searches were repeated in all databases on 18 February, 2019. We only included full-length preclinical and clinical studies that were published in the English language that examined the effects of BCAA administration on seizures. RESULTS Eleven of 2045 studies met our inclusion criteria: ten studies were conducted in animal models and one study in human subjects. Seven seizure models were investigated: the strychnine (one study), pentylenetetrazole (two studies), flurothyl (one study), picrotoxin (two studies), genetic absence epilepsy in rats (one study), kainic acid (two studies), and methionine sulfoximine (one study) paradigms. Three studies investigated the effect of a BCAA mixture whereas the other studies explored the effects of individual BCAAs on seizures. In most animal models and in humans, BCAAs had potent anti-seizure effects. However, in the methionine sulfoximine model, long-term BCAA supplementation worsened seizure propagation and caused neuron loss, and in the genetic absence epilepsy in rats model, BCAAs exhibited pro-seizure effects. CONCLUSIONS The contradictory effects of BCAAs on seizure activity likely reflect differences in the complex mechanisms that underlie seizure disorders. Some of these mechanisms are likely mediated by BCAA's effects on glucose, glutamate, glutamine, and ammonia metabolism, activation of the mechanistic target of rapamycin signaling pathway, and their effects on aromatic amino acid transport and neurotransmitter synthesis. We propose that a better understanding of mechanisms by which BCAAs affect seizures and neuronal viability is needed to advance the field of BCAA supplementation in epilepsy.
Collapse
Affiliation(s)
- Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| | - Eric C Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Denise Hersey
- Lewis Science Library, Princeton University, Princeton, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Carratala-Marco F, Andreo-Lillo P, Martinez-Morga M, Escamez-Martínez T, Botella-López A, Bueno C, Martinez S. Clinical Phenotypes Associated to Engrailed 2 Gene Alterations in a Series of Neuropediatric Patients. Front Neuroanat 2018; 12:61. [PMID: 30147646 PMCID: PMC6095973 DOI: 10.3389/fnana.2018.00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 07/04/2018] [Indexed: 01/10/2023] Open
Abstract
The engrailed homeobox protein (EN) plays an important role in the regionalization of the neural tube. EN distribution regulates the cerebellum and midbrain morphogenesis, as well as retinotectal synaptogenesis. In humans, the EN1 and EN2 genes code for the EN family of transcription factors. Genetic alterations in the expression of EN2 have been related to different neurologic conditions and more particularly to autism spectrum disorders (ASD). We aimed to study and compare the phenotypes of three series of patients: (1) patients with encephalic structural anomalies (ESA) and abnormalities in the genomic (DNA) and/or transcriptomic (RNAm) of EN2 (EN2-g), (2) ESA patients having other gene mutations (OG-g), and (3) ESA patients free of these mutations (NM-g). Subjects and Methods: We have performed a descriptive study on 109 patients who suffer from mental retardation (MR), cerebral palsy (CP), epilepsy (EP), and behavioral disorders (BD), showing also ESA in their encephalic MRI. We studied genomic DNA and transcriptional analysis (cDNA) on EN2 gene (EN2), and in other genes (OG): LIS1, PTAFR, PAFAH1B2, PAFAH1B3, FGF8, PAX2, D17S379, D17S1866, and SMG6 (D17S5), as a routine genetic diagnosis in ESA patients. Results: From 109 patients, fifteen meet the exclusion criteria. From the remaining 94 patients, 12 (12.8%) showed mutations in EN2 (EN2-g), 20 showed mutations in other studied genes (OG-g), and 62 did not showed any mutation (NM-g). All EN2-g patients, suffered from MR, nine EP, seven BD and four CP. The proportions of these phenotypes in EN2-g did not differ from those in the OG-g, but it was significantly higher when comparing EN2-g with NM-g (MR: p = 0.013; EP: p = 0.001; BD: p = 0.0001; CP: p = 0.07, ns). Groups EN2-g and OG-g showed a 100 and a 70% of comorbidity, respectively, being significantly (p = 0.04) greater than NM-group (62.9%). Conclusion: Our series reflects a significant effect of EN2 gene alterations in neurodevelopmental abnormalities associated to ESA. Conversely, although these EN2 related anomalies might represent a predisposition to develop brain diseases, our results did not support direct relationship between EN2 mutations and specific clinical phenotypes.
Collapse
Affiliation(s)
| | | | - Marta Martinez-Morga
- Neuroscience Institute UMH-CSIC, CIBERSAM-ISCIII, Alicante, Spain.,IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | | | | | - Carlos Bueno
- Neuroscience Institute UMH-CSIC, CIBERSAM-ISCIII, Alicante, Spain
| | | |
Collapse
|
15
|
Impaired Neuronal Differentiation of Neural Stem Cells Lacking the Engrailed-2 Gene. Neuroscience 2018; 386:137-149. [DOI: 10.1016/j.neuroscience.2018.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
|
16
|
Zhu Y, Feng J, Ji J, Hou H, Chen L, Wu S, Liu Q, Yao Q, Du P, Zhang K, Chen Q, Chen Z, Zhang H, Tian M. Alteration of Monoamine Receptor Activity and Glucose Metabolism in Pediatric Patients with Anticonvulsant-Induced Cognitive Impairment. J Nucl Med 2017; 58:1490-1497. [PMID: 28302757 DOI: 10.2967/jnumed.116.189290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
A landmark study from the Institute of Medicine reported that the assessment of cognitive difficulties in children with epilepsy is timely and imperative. Anticonvulsant-induced cognitive impairment could influence the quality of life more than seizure itself in patients. Although the monoaminergic system is involved in the regulation of cognitive process, its role in anticonvulsant-induced cognitive impairment remains unclear. Methods: To explore in vivo monoamine receptor binding activity in patients with anticonvulsant-induced cognitive impairment, each patient underwent PET imaging with both monoamine receptor binding agent 11C-N-methylspiperone and glucose metabolic agent 18F-FDG. Tests of intelligence quotient (IQ), including verbal IQ (VIQ), performance IQ (PIQ), and full-scale IQ (FSIQ), were performed in each patient. Results: Compared with the patients with monotherapy, patients with polytherapy had significantly lower VIQ, PIQ, and FSIQ (P < 0.01 in each comparison), as well as significantly lower monoamine receptor activities detected in the caudate nucleus, prefrontal cortex, dorsal anterior cingulate cortex, and amygdale (P < 0.05 in each comparison). However, regarding the glucose metabolism, there was no significant difference found in patients with monotherapy or polytherapy (P > 0.05). Conclusion: Monoamine receptor PET imaging could be a promising in vivo imaging biomarker for mapping anticonvulsant-induced cognitive impairment.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jianhua Feng
- Department of Paediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Jianfeng Ji
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Haifeng Hou
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Lin Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qing Liu
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qiong Yao
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Peizhen Du
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Kai Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qing Chen
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Zexin Chen
- Department of Clinical Epidemiology & Biostatistics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China .,Zhejiang University Medical PET Centre, Zhejiang University, Hangzhou, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front Neurosci 2016; 10:492. [PMID: 27891070 PMCID: PMC5102907 DOI: 10.3389/fnins.2016.00492] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of "one-molecule-one-target," have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | | | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
18
|
Van Schoors J, Viaene J, Van Wanseele Y, Smolders I, Dejaegher B, Vander Heyden Y, Van Eeckhaut A. An improved microbore UHPLC method with electrochemical detection for the simultaneous determination of low monoamine levels in in vivo brain microdialysis samples. J Pharm Biomed Anal 2016; 127:136-46. [DOI: 10.1016/j.jpba.2016.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
|
19
|
Banach M, Popławska M, Błaszczyk B, Borowicz KK, Czuczwar SJ. Pharmacokinetic/pharmacodynamic considerations for epilepsy - depression comorbidities. Expert Opin Drug Metab Toxicol 2016; 12:1067-80. [PMID: 27267259 DOI: 10.1080/17425255.2016.1198319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Epilepsy may be frequently associated with psychiatric disorders and its co-existence with depression usually results in the reduced quality of life of patients with epilepsy. Also, the efficacy of antiepileptic treatment in depressed patients with epilepsy may be significantly reduced. AREAS COVERED Results of experimental studies indicate that antidepressants co-administered with antiepileptic drugs may either increase their anticonvulsant activity, remain neutral or decrease the protective action of antiepileptic drugs in models of seizures. Apart from purely pharmacodynamic interactions, pharmacokinetic mechanisms have been proven to contribute to the final outcome. We report on clinical data regarding the pharmacokinetic interactions of enzyme-inducing antiepileptic drugs with various antidepressants, whose plasma concentration may be significantly reduced. On the other hand, antidepressants (especially selective serotonin reuptake inhibitors) may influence the metabolism of antiepileptics, in many cases resulting in the elevation of plasma concentration of antiepileptic drugs. EXPERT OPINION The preclinical data may provide valuable clues on how to combine these two groups of drugs - antidepressant drugs neutral or potentiating the anticonvulsant action of antiepileptics are recommended in this regard. Avoidance of antidepressants clearly decreasing the convulsive threshold or decreasing the anticonvulsant efficacy of antiepileptic drugs (f.e. bupropion or mianserin) in patients with epilepsy is recommended.
Collapse
Affiliation(s)
- Monika Banach
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Monika Popławska
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Barbara Błaszczyk
- b Faculty of Health Sciences , High School of Economics, Law and Medical Sciences , Kielce , Poland
| | - Kinga K Borowicz
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Stanisław J Czuczwar
- c Department of Pathophysiology , Medical University , Lublin , Poland.,d Department of Physiopathology , Institute of Rural Health , Lublin , Poland
| |
Collapse
|