1
|
Krassovskaia PM, Chaves AB, Houmard JA, Broskey NT. Exercise during Pregnancy: Developmental Programming Effects and Future Directions in Humans. Int J Sports Med 2021; 43:107-118. [PMID: 34344043 DOI: 10.1055/a-1524-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidemiological studies show that low birth weight is associated with mortality from cardiovascular disease in adulthood, indicating that chronic diseases could be influenced by hormonal or metabolic insults encountered in utero. This concept, now known as the Developmental Origins of Health and Disease hypothesis, postulates that the intrauterine environment may alter the structure and function of the organs of the fetus as well as the expression of genes that impart an increased vulnerability to chronic diseases later in life. Lifestyle interventions initiated during the prenatal period are crucial as there is the potential to attenuate progression towards chronic diseases. However, how lifestyle interventions such as physical activity directly affect human offspring metabolism and the potential mechanisms involved in regulating metabolic balance at the cellular level are not known. The purpose of this review is to highlight the effects of exercise during pregnancy on offspring metabolic health and emphasize gaps in the current human literature and suggestions for future research.
Collapse
Affiliation(s)
- Polina M Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Alec B Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Joseph A Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Nicholas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| |
Collapse
|
2
|
Maternal exercise during pregnancy modulates mitochondrial function and redox status in a sex-dependent way in adult offspring's skeletal muscle. J Dev Orig Health Dis 2021; 13:204-211. [PMID: 33947489 DOI: 10.1017/s2040174421000209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Maternal exercise has shown beneficial effects on mother and child. Literature confirm progeny's cognition improvement, and upregulation in neurotrophins, antioxidant network, and DNA repair system. Considering that there is a lack of information demonstrating the impact of maternal exercise on offspring's skeletal muscle, we aimed to investigate the mitochondrial and redox effects elicited by maternal swimming. Adult female Wistar rats were divided into three groups: control sedentary, free swimming, and swimming with overload (2% of the body weight). Exercised groups were submitted weekly to five swimming sessions (30 min/day), starting 1 week prior to the mating and lasting to the delivery. Gastrocnemius and soleus muscle from 60-day-old offspring were analyzed. Our results clearly showed a sex-dependent effect. Male soleus showed increased mitochondrial functionality in the overload group. Female muscle from the overload group adapted deeply. Considering the redox status, the female offspring delivered to overload exercised dams presented reduced oxidants levels and protein damage, allied to downregulated antioxidant defenses. We also observed an increase in the mitochondrial function in the gastrocnemius muscle of the female offspring born from overload exercised dams. Soleus from female delivered to the overload exercise group presented reduced mitochondrial activity, as well as reduced reactive species, protein carbonyls, and antioxidant network, when compared to the male. In conclusion, maternal exercise altered the redox status and mitochondrial function in the offspring's skeletal muscle in a sex-dependent way. The clinical implication was not investigated; however, the sexual dimorphism in response to maternal exercise might impact exercise resilience in adulthood.
Collapse
|
3
|
Stevanović-Silva J, Beleza J, Coxito P, Pereira S, Rocha H, Gaspar TB, Gärtner F, Correia R, Martins MJ, Guimarães T, Martins S, Oliveira PJ, Ascensão A, Magalhães J. Maternal high-fat high-sucrose diet and gestational exercise modulate hepatic fat accumulation and liver mitochondrial respiratory capacity in mothers and male offspring. Metabolism 2021; 116:154704. [PMID: 33421507 DOI: 10.1016/j.metabol.2021.154704] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Maternal high-caloric nutrition and related gestational diabetes mellitus (GDM) are associated with a high-risk for developing metabolic complications later in life and in their offspring. In contrast, exercise is recognized as a non-pharmacological strategy against metabolic dysfunctions associated to lifestyle disorders. Therefore, we investigated whether gestational exercise delays the development of metabolic alterations in GDM mothers later in life, but also protects 6-week-old male offspring from adverse effects of maternal diet. METHODS Female Sprague-Dawley rats were fed with either control (C) or high-fat high-sucrose (HFHS) diet to induce GDM and submitted to gestational exercise during the 3 weeks of pregnancy. Male offspring were sedentary and fed with C-diet. RESULTS Sedentary HFHS-fed dams exhibited increased gestational body weight gain (p < 0.01) and glucose intolerance (p < 0.01), characteristic of GDM. Their offspring had normal glucose metabolism, but increased early-age body weight, which was reverted by gestational exercise. Gestational exercise also reduced offspring hepatic triglycerides accumulation (p < 0.05) and improved liver mitochondrial respiration capacity (p < 0.05), contributing to the recovery of liver bioenergetics compromised by maternal HFHS diet. Interestingly, liver mitochondrial respiration remained increased by gestational exercise in HFHS-fed dams despite prolonged HFHS consumption and exercise cessation. CONCLUSIONS Gestational exercise can result in liver mitochondrial adaptations in GDM animals, which can be preserved even after the exercise program cessation. Exposure to maternal GDM programs liver metabolic setting of male offspring, whereas gestational exercise appears as an important preventive tool against maternal diet-induced metabolic alterations.
Collapse
Affiliation(s)
- Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal.
| | - Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| | - Susana Pereira
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; CNC - Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
| | - Tiago Bordeira Gaspar
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal; Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal; Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Fátima Gärtner
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal; Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology of University of Porto (Ipatimup), University of Porto, 4200-135 Porto, Portugal
| | - Rossana Correia
- HEMS - Histology and Electron Microscopy Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135, Porto, Portugal,; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria João Martins
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Tiago Guimarães
- Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Clinical Pathology, São João Hospital Centre, EPE, 4200-319 Porto, Portugal
| | - Sandra Martins
- Department of Clinical Pathology, São João Hospital Centre, EPE, 4200-319 Porto, Portugal; EPIUnit, Institute of Public Health, University of Porto, 4050-091 Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| |
Collapse
|
4
|
Sanches EF, Dos Santos TM, Odorcyk F, Untertriefallner H, Rezena E, Hoeper E, Avila T, Martini AP, Venturin GT, da Costa JC, Greggio S, Netto CA, Wyse AT. Pregnancy swimming prevents early brain mitochondrial dysfunction and causes sex-related long-term neuroprotection following neonatal hypoxia-ischemia in rats. Exp Neurol 2021; 339:113623. [PMID: 33529673 DOI: 10.1016/j.expneurol.2021.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.
Collapse
Affiliation(s)
- E F Sanches
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - T M Dos Santos
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Odorcyk
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H Untertriefallner
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Rezena
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Hoeper
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - T Avila
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A P Martini
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T Wyse
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Mohammadkhani R, Khaledi N, Rajabi H, Salehi I, Komaki A. Influence of the maternal high-intensity-interval-training on the cardiac Sirt6 and lipid profile of the adult male offspring in rats. PLoS One 2020; 15:e0237148. [PMID: 32745152 PMCID: PMC7398538 DOI: 10.1371/journal.pone.0237148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
The susceptibility to cardiovascular disease in offspring could be reduced prior to birth through maternal intervention, before and during pregnancy. We evaluated whether the initiation periods of maternal exercise in preconception and pregnancy periods induce beneficial effects in the adult male offspring. Thirty-two female rats were divided into control and exercise groups. The exercise groups involve exercise before pregnancy or the preconception periods, exercise during pregnancy, and exercise before and during pregnancy. The mothers in the exercise groups were run on the treadmill in different periods. Then the birth weight and weekly weight gain of male offspring were measured, and the blood and left ventricle tissue of samples were collected for analysis of the Sirtuin 6 (Sirt6) and insulin growth factor-2 (IGF-2) gene expression, serum levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol (Cho), and triglycerides (TG). There was no significant difference in the birth weight of offspring groups (P = 0.246) while maternal HIIT only during pregnancy leads to reduce weekly weight gain of offspring. Our data showed that Sirt6 and IGF-2 gene expression was increased (P = 0.017) and decreased (P = 0.047) by maternal exercise prior to and during pregnancy, respectively. Also, the serum level of LDL (p = 0.002) and Cho (P = 0.007) were significantly decreased and maternal exercise leads to improves the running speed of the adult male offspring (p = 0.0176). This study suggests that maternal HIIT prior to and during pregnancy have positive intergenerational consequence in the health and physical readiness of offspring.
Collapse
Affiliation(s)
- Reihaneh Mohammadkhani
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Neda Khaledi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Klein CP, Dos Santos Rodrigues K, Hözer RM, de Sá Couto-Pereira N, Saccomori AB, Dal Magro BM, Crestani MS, Hoppe JB, Salbego CG, Dalmaz C, Matté C. Swimming exercise before and during pregnancy: Promising preventive approach to impact offspring´s health. Int J Dev Neurosci 2018; 71:83-93. [PMID: 30172896 DOI: 10.1016/j.ijdevneu.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023] Open
Abstract
Several environmental factors affect child development, such as the intrauterine environment during the embryonic and fetal development and early postnatal environment provided by maternal behavior. Although mechanistic effects of maternal exercise on offspring health improvement are not yet completely understood, the number of reports published demonstrating the positive influence of maternal exercise have increase. Herein, we addressed issues related to early postnatal environment provided by maternal behavior and early developmental physical landmarks, sensorimotor reflexes, and motor movements ontogeny. In brief, adult female rats underwent involuntary swimming exercise, in a moderated intensity, one week before mating and throughout pregnancy, 30 min a day, 5 days a week. Maternal exercised dams have unchanged gestational outcomes compared to sedentary dams. We found no differences concerning the frequency of pup-directed behavior displayed by dams. However, sedentary dams displayed a poorer pattern of maternal care quality during dark cycle than exercised dams. Physical landmarks and sensorimotor reflexes development of female and male littermates did not differ between maternal groups. Developmental motor parameters such as immobility, lateral head movements, head elevation, pivoting, rearing with forelimb support and crawling frequencies did not differ between groups. Pups born to exercised dams presented higher frequency of walking and rearing on the hind legs. These data suggest that female and male littermates of exercised group present a high frequency of exploratory behavior over sedentary littermates. Taken together, the present findings reinforce that maternal exercise throughout pregnancy represent a window of opportunity to improve offspring's postnatal health.
Collapse
Affiliation(s)
- Caroline Peres Klein
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karoline Dos Santos Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Régis Mateus Hözer
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Brum Saccomori
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bárbara Mariño Dal Magro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Scortegagna Crestani
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Bender Hoppe
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christianne Gazzana Salbego
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Fisiologia, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|