1
|
Feuerbacher JF, Jacobs MW, Heumann P, Pareja‐Blanco F, Hackney AC, Zacher J, Schumann M. Neuromuscular Adaptations to Same Versus Separate Muscle-Group Concurrent Aerobic and Strength Training in Recreationally Active Males and Females. Scand J Med Sci Sports 2025; 35:e70025. [PMID: 39921365 PMCID: PMC11806282 DOI: 10.1111/sms.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Combining aerobic and strength training may attenuate neuromuscular adaptations, particularly when both target the same muscle group. This study assessed whether separating the training modalities by muscle groups mitigates this interference. Ninety-six participants (56 males and 40 females) completed a 12-week intervention, divided into three groups: (1) LHLS (lower-body high-intensity interval (HIIT) and strength training), (2) LHUS (lower-body HIIT and upper-body strength training), and (3) LSUS (lower- and upper-body strength training). Maximal (1RM) and explosive strength were assessed using load-velocity profiling, with mean propulsive velocity (MPV) at 30%, 50%, 70%, and 90% of 1RM as a measure of explosive strength. Muscle cross-sectional area (CSA) of the M. vastus lateralis and M. pectoralis major was measured using panoramic ultrasound. Lower-body adaptations were compared between LHLS and LSUS, and upper-body adaptations were compared between LHUS and LSUS. MPV at 70% and 90% of 1RM for the squat (LHLS and LSUS) and bench press (LHUS and LSUS) showed improvements (p < 0.050), with no significant between-group differences. Squat 1RM improved in both LHLS and LSUS, and bench press 1RM increased in both LHUS and LSUS (all p < 0.001). M. vastus lateralis CSA increased in LHLS (p = 0.029) but not in LSUS, whereas M. pectoralis major CSA increased in both LHUS and LSUS (p < 0.001), with no between-group differences. No sex-based differences were observed. Concurrent aerobic and strength training does not impair explosive strength, maximal strength, or muscle hypertrophy, regardless of whether the same or separate muscle groups are targeted.
Collapse
Affiliation(s)
- Joshua F. Feuerbacher
- Department of Sports Medicine and Exercise TherapyUniversity of TechnologyChemnitzGermany
- Department of Molecular and Cellular Sports MedicineGerman Sport UniversityCologneGermany
| | - Mats W. Jacobs
- Department of Sports Medicine and Exercise TherapyUniversity of TechnologyChemnitzGermany
| | - Paulina Heumann
- Department of Sports Medicine and Exercise TherapyUniversity of TechnologyChemnitzGermany
| | - Fernando Pareja‐Blanco
- Faculty of Sports Sciences, Physical Performance & Sports Research CenterUniversidad Pablo de OlavideSevilleSpain
| | | | - Jonas Zacher
- Institute of Cardiology and Sports MedicineGerman Sports University CologneCologneGermany
| | - Moritz Schumann
- Department of Sports Medicine and Exercise TherapyUniversity of TechnologyChemnitzGermany
| |
Collapse
|
2
|
Mpampoulis T, Methenitis S, Stasinaki AN, Zaras N, Bogdanis GC, Terzis G. Effect of Different Reduced Training Frequencies After 12 Weeks of Concurrent Ballistic and Aerobic Training on Muscle Power and Triceps Brachii Muscle Architecture. J Funct Morphol Kinesiol 2025; 10:37. [PMID: 39846678 PMCID: PMC11755545 DOI: 10.3390/jfmk10010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: The aim of the present study was to investigate the effect of two long-term reduced concurrent training frequencies (incorporating power training for the upper and high-intensity interval aerobic training for the lower extremities), in which participants performed one training session every either 7 or 14 days, after 12 weeks of systematic concurrent training on upper extremities' muscle strength, power, and morphology in young females. Methods: After a 12-week concurrent resistance and aerobic training period, participants were assigned into three groups and performed either one training session every 7 days (G7), or once every 14 days (G14), or detraining (GD) for 12 weeks, followed by 12 additional weeks of detraining. Results: Performance and muscle mass increased after the initial 12-week training period. After the reduced training frequency period, bench press 1-RM and aerobic power remained unchanged in G7 and decreased significantly in G14 (-5.9 ± 4.9%; -1.4 ± 4.5%). Muscle power and muscle thickness of the triceps branchii long head decreased significantly in G7 (-9.8 ± 7.7%; -0.9 ± 0.6%; respectively, p < 0.05) and G14 (-10.9 ± 7.6%; -2.8 ± 2.7%, respectively, p < 0.05), without significant differences between groups (p > 0.05). Conclusions: In conclusion, 12 weeks of systematic concurrent resistance (upper extremities) and aerobic training (lower extremities) induced significant improvements in upper extremities muscle power/strength and muscle architecture characteristics. Both reduced training frequencies led to significant reductions in power performance. Thus, performing one training session every 2 weeks for 3 months may preserve 90 to 95% of the muscle power/strength, aerobic power and 72% of muscle mass adaptations achieved with systematic concurrent training. However, greater preservations in the above parameters could be observed if the training frequency is one training session per week.
Collapse
Affiliation(s)
- Thomas Mpampoulis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (S.M.); (A.N.S.); (G.C.B.)
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (S.M.); (A.N.S.); (G.C.B.)
| | - Angeliki N. Stasinaki
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (S.M.); (A.N.S.); (G.C.B.)
| | - Nikolaos Zaras
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece;
- Human Performance Laboratory, Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Gregory C. Bogdanis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (S.M.); (A.N.S.); (G.C.B.)
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (S.M.); (A.N.S.); (G.C.B.)
| |
Collapse
|
3
|
Mpampoulis T, Stasinaki AN, Methenitis S, Zaras N, Bogdanis GC, Terzis G. Effect of Different Reduced Training Frequencies after 12 Weeks of Concurrent Resistance and Aerobic Training on Muscle Strength and Morphology. Sports (Basel) 2024; 12:198. [PMID: 39058089 PMCID: PMC11280775 DOI: 10.3390/sports12070198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of the study was to investigate the effect of two long-term reduced concurrent training modalities, in which participants performed one training session every either 7 or 14 days, after 12 weeks of systematic concurrent resistance and aerobic training, on lower extremities' muscle strength, power, and morphology in young females. After the 12-week training period, participants were assigned into three groups and performed either one training session every 7 days (G7) or once every 14 days (G14), or detraining (GD), for 12 weeks, followed by 12 additional weeks of detraining. The following were measured before, after the systematic training period, after the end of the reduced training frequency period, and after the end of complete detraining: body composition, leg press 1-RM, countermovement jump, quadriceps cross-sectional area (CSA), vastus lateralis muscle architecture, and maximum aerobic power. Performance and muscle mass increased after the initial 12-week training period. Thereafter, leg press 1-RM, quadriceps CSA, and aerobic power remained unchanged in the G7 group, but decreased in G14 (-4.4 ± 3.5%; -5.9 ± 1.8%; -9.0 ± 7.8%, respectively, p < 0.05), maintaining 95.6 ± 3.5%, 94.1 ± 1.8%, and 91.0 ± 7.8% of the initial training adaptations, respectively. In conclusion, performing one training session every 2 weeks for 3 months may preserve 90 to 95% of the muscle mass/strength and aerobic power adaptations achieved with systematic concurrent training.
Collapse
Affiliation(s)
- Thomas Mpampoulis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (T.M.); (A.N.S.); (S.M.); (G.C.B.)
| | - Angeliki N. Stasinaki
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (T.M.); (A.N.S.); (S.M.); (G.C.B.)
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (T.M.); (A.N.S.); (S.M.); (G.C.B.)
| | - Nikolaos Zaras
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece;
- Human Performance Laboratory, Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Gregory C. Bogdanis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (T.M.); (A.N.S.); (S.M.); (G.C.B.)
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece; (T.M.); (A.N.S.); (S.M.); (G.C.B.)
| |
Collapse
|
4
|
Petré H, Tinmark F, Rosdahl H, Psilander N. Effects of Different Recovery Periods Following a Very Intense Interval Training Session on Strength and Explosive Performance in Elite Female Ice Hockey Players. J Strength Cond Res 2024; 38:e383-e390. [PMID: 38608001 PMCID: PMC11188631 DOI: 10.1519/jsc.0000000000004782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
ABSTRACT Petré, H, Tinmark, F, Rosdahl, H, and Psilander, N. Effects of different recovery periods following a very intense interval training session on strength and explosive performance in elite female ice hockey players. J Strength Cond Res 38(7): e383-e390, 2024-This study investigates how different recovery periods after high-intensity interval training (HIIT) affects strength and explosive performance during a power training (PT) session. Fifteen female elite ice hockey players (22.5 ± 5.2 years) performed PT, including 6 sets of 2 repetitions (reps) of isometric leg press (ILP) and 6 sets of 3 reps of countermovement jump (CMJ), following a rested state and 10 minutes, 6 hours, or 24 hours after HIIT (3 sets of 8 × 20 seconds at 115% of power output at maximal oxygen consumption on a cycle ergometer). Peak force (PF) and peak rate of force development (pRFD) were measured during the ILP. Peak jump height (PJH), concentric phase duration (ConDur), eccentric phase duration, total duration, peak power (PP), velocity at peak power (V@PP), and force at peak power were measured during CMJ. The following variables were significantly reduced when only a 10-minute recovery period was allowed between HIIT and PT: PF was reduced by 7% ( p < 0.001), pRFD by 17% ( p < 0.001), PJH by 4% ( p < 0.001), ConDur by 4% ( p = 0.018), PP by 2% ( p = 0.016), and V@PP by 2% ( p = 0.007). None of the measured variables were reduced when PT was performed 6 and 24 hours after HIIT. We conclude that strength and explosive performance of elite female ice hockey players is reduced 10 minutes after HIIT but not negatively affected if a rest period of at least 6 hours is provided between HIIT and PT.
Collapse
Affiliation(s)
- Henrik Petré
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Fredrik Tinmark
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Hans Rosdahl
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Psilander
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
5
|
Sterczala AJ, Rodriguez‐Ortiz N, Feigel ED, Krajewski K, Martin BJ, Sekel NM, Lovalekar M, Kargl CK, Koltun KJ, Van Eck C, Flanagan S, Connaboy C, Wardle SL, O'Leary TJ, Greeves JP, Nindl BC. Skeletal muscle adaptations to high-intensity, low-volume concurrent resistance and interval training in recreationally active men and women. Physiol Rep 2024; 12:e15953. [PMID: 38490811 PMCID: PMC10942853 DOI: 10.14814/phy2.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 03/17/2024] Open
Abstract
This study compared the structural and cellular skeletal muscle factors underpinning adaptations in maximal strength, power, aerobic capacity, and lean body mass to a 12-week concurrent resistance and interval training program in men and women. Recreationally active women and men completed three training sessions per week consisting of high-intensity, low-volume resistance training followed by interval training performed using a variety upper and lower body exercises representative of military occupational tasks. Pre- and post-training vastus lateralis muscle biopsies were analyzed for changes in muscle fiber type, cross-sectional area, capillarization, and mitochondrial biogenesis marker content. Changes in maximal strength, aerobic capacity, and lean body mass (LBM) were also assessed. Training elicited hypertrophy of type I (12.9%; p = 0.016) and type IIa (12.7%; p = 0.007) muscle fibers in men only. In both sexes, training decreased type IIx fiber expression (1.9%; p = 0.046) and increased total PGC-1α (29.7%, p < 0.001) and citrate synthase (11.0%; p < 0.014) content, but had no effect on COX IV content or muscle capillarization. In both sexes, training increased maximal strength and LBM but not aerobic capacity. The concurrent training program was effective at increasing strength and LBM but not at improving aerobic capacity or skeletal muscle adaptations underpinning aerobic performance.
Collapse
Affiliation(s)
- Adam J. Sterczala
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Human Engineering Research LaboratoriesVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Nathaniel Rodriguez‐Ortiz
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Evan D. Feigel
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kellen T. Krajewski
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brian J. Martin
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nicole M. Sekel
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mita Lovalekar
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Christopher K. Kargl
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kristen J. Koltun
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Carola Van Eck
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shawn D. Flanagan
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Center for Lower Extremity Ambulatory ResearchRosalind Franklin University of Medicine & ScienceNorth ChicagoILUSA
| | - Christopher Connaboy
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Center for Lower Extremity Ambulatory ResearchRosalind Franklin University of Medicine & ScienceNorth ChicagoILUSA
| | - Sophie L. Wardle
- Army Health and Performance ResearchArmy HeadquartersAndoverUK
- Present address:
Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Thomas J. O'Leary
- Army Health and Performance ResearchArmy HeadquartersAndoverUK
- Present address:
Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Julie P. Greeves
- Army Health and Performance ResearchArmy HeadquartersAndoverUK
- Present address:
Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
- Present address:
Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
| | - Bradley C. Nindl
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Huiberts RO, Wüst RCI, van der Zwaard S. Concurrent Strength and Endurance Training: A Systematic Review and Meta-Analysis on the Impact of Sex and Training Status. Sports Med 2024; 54:485-503. [PMID: 37847373 PMCID: PMC10933151 DOI: 10.1007/s40279-023-01943-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Many sports require maximal strength and endurance performance. Concurrent strength and endurance training can lead to suboptimal training adaptations. However, how adaptations differ between males and females is currently unknown. Additionally, current training status may affect training adaptations. OBJECTIVE We aimed to assess sex-specific differences in adaptations in strength, power, muscle hypertrophy, and maximal oxygen consumption ( V ˙ O2max) to concurrent strength and endurance training in healthy adults. Second, we investigated how training adaptations are influenced by strength and endurance training status. METHODS A systematic review and meta-analysis was conducted according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, and a Cochrane risk of bias was evaluated. ISI Web of science, PubMed/MEDLINE, and SPORTDiscus databases were searched using the following inclusion criteria: healthy adults aged 18-50 years, intervention period of ≥ 4 weeks, and outcome measures were defined as upper- and lower-body strength, power, hypertrophy, and/or V ˙ O2max. A meta-analysis was performed using a random-effects model and reported in standardized mean differences. RESULTS In total, 59 studies with 1346 participants were included. Concurrent training showed blunted lower-body strength adaptations in males, but not in females (male: - 0.43, 95% confidence interval [- 0.64 to - 0.22], female: 0.08 [- 0.34 to 0.49], group difference: P = 0.03). No sex differences were observed for changes in upper-body strength (P = 0.67), power (P = 0.37), or V ˙ O2max (P = 0.13). Data on muscle hypertrophy were insufficient to draw any conclusions. For training status, untrained but not trained or highly trained endurance athletes displayed lower V ˙ O2max gains with concurrent training (P = 0.04). For other outcomes, no differences were found between untrained and trained individuals, both for strength and endurance training status. CONCLUSIONS Concurrent training results in small interference for lower-body strength adaptations in males, but not in females. Untrained, but not trained or highly trained endurance athletes demonstrated impaired improvements in V ˙ O2max following concurrent training. More studies on females and highly strength-trained and endurance-trained athletes are warranted. CLINICAL TRIAL REGISTRATION PROSPERO: CRD42022370894.
Collapse
Affiliation(s)
- Raven O Huiberts
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Department of Cardiology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Chen Y, Feng X, Huang L, Wang K, Mi J. Comparative efficacy of concurrent training types on lower limb strength and muscular hypertrophy: A systematic review and network meta-analysis. J Exerc Sci Fit 2024; 22:86-96. [PMID: 38187085 PMCID: PMC10767279 DOI: 10.1016/j.jesf.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objective This study aims to compare, through quantitative analysis, the effectiveness of different endurance training types on increasing lower limb strength and muscle cross-sectional area (MCSA) in concurrent training. Methods This systematic literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) [PROSPERO ID: CRD42023396886]. Web of Science, SportDiscuss, Pubmed, Cochrane, and Scopus were systematically searched from their inception date to October 20, 2023. Results A total of 40 studies (841 participants) were included in this meta-analysis. MCSA analysis showed that, compared to resistance training alone, concurrent high-intensity interval running training and resistance training and concurrent moderate-intensity continuous cycling training and resistance training were more effective (SMD = 0.15, 95% CI = -0.46 to 0.76, and SMD = 0.07, 95% CI = -0.24 to 0.38 respectively), while other modalities of concurrent training not. Lower body maximal strength analysis showed that all modalities of concurrent training were inferior to resistance training alone, but concurrent high-intensity interval training and resistance training showed an advantage in four different concurrent training modalities (SMD = -0.08, 95% CI = -0.25 to 0.08). For explosive strength, only concurrent high-intensity interval training and resistance training was superior to resistance training (SMD = 0.06, 95% CI = -0.21 to 0.33). Conclusion Different endurance training types have an impact on the effectiveness of concurrent training, particularly on lower limb strength. Adopting high-intensity interval running as the endurance training type in concurrent training can effectively minimize the adverse effects on lower limb strength and MCSA.
Collapse
Affiliation(s)
- Yonghui Chen
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| | - Xinmiao Feng
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| | - Lanmin Huang
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| | - Keli Wang
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| | - Jing Mi
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| |
Collapse
|
8
|
Petré H, Ovendal A, Westblad N, Ten Siethoff L, Rosdahl H, Psilander N. Effect of the Intrasession Exercise Order of Flywheel Resistance and High-Intensity Interval Training on Maximal Strength and Power Performance in Elite Team-Sport Athletes. J Strength Cond Res 2023; 37:2389-2396. [PMID: 37389921 PMCID: PMC10671210 DOI: 10.1519/jsc.0000000000004556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Petré, H, Ovendal, A, Westblad, N, Ten Siethoff, L, Rosdahl, H, and Psilander, N. Effect of the intrasession exercise order of flywheel resistance and high-intensity interval training on maximal strength and power performance in elite team-sport athletes. J Strength Cond Res 37(12): 2389–2396, 2023—This study aimed to investigate the effect of intrasession exercise order of maximal effort flywheel resistance training (RT; 4 × 6 repetitions [rep]) and high-intensity interval training (HIIT, 2–4 × 8 rep of 20 second at 130% of Watt at V̇o 2max [wV̇o 2max]), on the development of maximal strength and power in elite team-sport athletes. A 7-week training intervention involving 2 training sessions per week of either HIIT followed by RT (HIIT + RT, n = 8), RT followed by HIIT (RT + HIIT, n = 8), or RT alone (RT, n = 7) was conducted in 23 elite male bandy players (24.7 ± 4.3 years). Power and work were continuously measured during the flywheel RT. Isometric squat strength (ISq), countermovement jump, squat jump, and V̇o 2max were measured before and after the training period. Power output during training differed between the groups (p = 0.013, η p 2 = 0.365) with RT producing more power than HIIT + RT (p = 0.005). ISq improved following RT + HIIT (∼80%, d = 2.10, p = 0.001) and following HIIT + RT (∼40%, d = 1.64, p = 0.005), and RT alone (∼70%, d = 1.67, p = 0.004). V̇o 2max increased following RT + HIIT and HIIT + RT (∼10%, d = 1.98, p = 0.001 resp. d = 2.08, p = 0.001). HIIT before RT reduced power output during RT in elite team-sport athletes but did not lead to blunted development of maximal strength or power after a 7-week training period. During longer training periods (>7-weeks), it may be advantageous to schedule RT before HIIT because the negative effect of HIIT + RT on training quality increased during the final weeks of training. In addition, the largest training effect on maximal strength was observed following RT + HIIT.
Collapse
Affiliation(s)
- Henrik Petré
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Alexander Ovendal
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Westblad
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Lasse Ten Siethoff
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Hans Rosdahl
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Psilander
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
9
|
Thomakos P, Spyrou K, Katsikas C, Geladas ND, Bogdanis GC. Effects of Concurrent High-Intensity and Strength Training on Muscle Power and Aerobic Performance in Young Soccer Players during the Pre-Season. Sports (Basel) 2023; 11:sports11030059. [PMID: 36976945 PMCID: PMC10099725 DOI: 10.3390/sports11030059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The aim of the present study was to evaluate two different intervention programs applied during a 4-week pre-season period. Twenty-nine players participated in this study and were divided into two groups. One group (BallTrain, n = 12, age: 17.8 ± 0.4 years, body mass: 73.9 ± 7.6 kg, height: 178 ± 0.1 cm, body fat: 9.6 ± 5.3%) performed a higher percentage of aerobic training with ball and strength training using plyometrics and exercises with body weight. The other group (HIITTrain, n = 17, age: 17.8 ± 0.7 years, body mass: 73.3 ± 5.0 kg, height: 179 ± 0.1 cm, body fat: 8.0 ± 2.3%) trained with high-intensity interval training (HIIT) without the ball and performed resistance training with weights in the same session. Both groups trained for strength (two times/week) and performed aerobic–anaerobic fitness without the ball, passing games, and tactical and small-sided games. Lower limb power (CMJ) and aerobic fitness (Yo-Yo intermittent recovery test level 1-IR1) were evaluated before and after the four-week training program. Yo-Yo IR1 performance was improved in both groups, but the improvement was greater for the HIITTrain than BallTrain group (468 ± 180 vs. 183 ± 177 m, p = 0.07). CMJ showed a non-significant improvement in the BallTrain group (5.8 ± 8.8%, p = 0.16), but it decreased by 8.1 ± 9% (p = 0.001), in the HIITTrain group. In conclusion, we have shown that a short pre-season period of training results in improvements in aerobic fitness in both groups, with high-intensity interval training showing superior adaptations than training with the ball. However, CMJ performance was reduced in this group, possibly suggesting higher fatigue levels and overload, and/or showing the effects of concurrent HIITTrain and strength training in soccer.
Collapse
Affiliation(s)
- Pierros Thomakos
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece
- Correspondence:
| | - Konstantinos Spyrou
- UCAM Research Center for High Performance Sport, UCAM Universidad Catόlica de Murcia, 30005 Murcia, Spain
- Facultad de Deporte, UCAM Universidad Católica de Murcia, 30005 Murcia, Spain
| | - Christos Katsikas
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece
| | - Nikolaos D. Geladas
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece
| | - Gregory C. Bogdanis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece
| |
Collapse
|
10
|
Acute Effects of Combined Lower-Body High-Intensity Interval Training and Upper-Body Strength Exercise on Explosive Strength Performance in Naturally Menstruating Women. Int J Sports Physiol Perform 2023; 18:386-392. [PMID: 36758559 DOI: 10.1123/ijspp.2022-0377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 02/11/2023]
Abstract
PURPOSE We aimed at investigating the acute effects of lower-body high-intensity interval training (HIIT) on upper- and lower-body explosive strength assessed by mean propulsive velocity (MPV) in naturally menstruating women. In addition, we assessed the combination of lower-body HIIT and squat, as well as lower-body HIIT and bench press, on bench press and squat MPV. METHODS Thirteen women (age: 23 [2] y, menstrual cycle length: 28.4 [2.0] d) completed 2 training modalities on separate days (separated by 30 [4.2] d) consisting of HIIT followed by lower-body (HIIT + LBS) or upper-body (HIIT + UBS) strength loading. Squat and bench press MPV were assessed before HIIT (T0), after HIIT (T1), after the strength loading (T2), and 24 hours postloading (T3). RESULTS Mixed factorial analysis of variance indicated a significant effect for time in bench press and squat (P < .001) but not for interaction. Pairwise comparison showed that bench press MPV remained unchanged (P = 1.000) at T1 but was reduced at T2 compared with T0 (HIIT + LBS: -8.2% [3.9%], HIIT + UBS: -13.8% [12.1%], P < .001) and T1 (HIIT + LBS: -7.1% [3.2%], HIIT + UBS: -12.7% [8.7%], P < .001). Squat MPV decreased at T1 (HIIT + LBS: -6.0% [8.8%], HIIT + UBS: -4.8% [5.4%], P = .009) and was found to be decreased at T2 compared with T0 in both conditions (HIIT + LBS: -6.9% [3.3%], HIIT + UBS: -7.4% [6.1%], P < .001) but not compared with T1 (P = 1.000). Bench press and squat MPV returned to baseline at T3 compared with T0 (P > .050). CONCLUSION Lower- but not upper-body explosive strength was reduced by HIIT. HIIT combined with upper- or lower-body strength loading resulted in a reduction of squat and bench press explosive strength.
Collapse
|
11
|
Lundberg TR, Feuerbacher JF, Sünkeler M, Schumann M. The Effects of Concurrent Aerobic and Strength Training on Muscle Fiber Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med 2022. [DOI: 10.1007/s40279-022-01688-x p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Background
Whole muscle hypertrophy does not appear to be negatively affected by concurrent aerobic and strength training compared to strength training alone. However, there are contradictions in the literature regarding the effects of concurrent training on hypertrophy at the myofiber level.
Objective
The current study aimed to systematically examine the extent to which concurrent aerobic and strength training, compared with strength training alone, influences type I and type II muscle fiber size adaptations. We also conducted subgroup analyses to examine the effects of the type of aerobic training, training modality, exercise order, training frequency, age, and training status.
Design
A systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [PROSPERO: CRD42020203777]. The registered protocol was modified to include only muscle fiber hypertrophy as an outcome.
Data Sources
PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically searched on 12 August, 2020, and updated on 15 March, 2021.
Eligibility Criteria
Population: healthy adults of any sex and age; intervention: supervised, concurrent aerobic and strength training of at least 4 weeks; comparison: identical strength training prescription, with no aerobic training; and outcome: muscle fiber hypertrophy.
Results
A total of 15 studies were included. The estimated standardized mean difference based on the random-effects model was − 0.23 (95% confidence interval [CI] − 0.46 to − 0.00, p = 0.050) for overall muscle fiber hypertrophy. The standardized mean differences were − 0.34 (95% CI − 0.72 to 0.04, p = 0.078) and − 0.13 (95% CI − 0.39 to 0.12, p = 0.315) for type I and type II fiber hypertrophy, respectively. A negative effect of concurrent training was observed for type I fibers when aerobic training was performed by running but not cycling (standardized mean difference − 0.81, 95% CI − 1.26 to − 0.36). None of the other subgroup analyses (i.e., based on concurrent training frequency, training status, training modality, and training order of same-session training) revealed any differences between groups.
Conclusions
In contrast to previous findings on whole muscle hypertrophy, the present results suggest that concurrent aerobic and strength training may have a small negative effect on fiber hypertrophy compared with strength training alone. Preliminary evidence suggests that this interference effect may be more pronounced when aerobic training is performed by running compared with cycling, at least for type I fibers.
Collapse
|
12
|
Lundberg TR, Feuerbacher JF, Sünkeler M, Schumann M. The Effects of Concurrent Aerobic and Strength Training on Muscle Fiber Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:2391-2403. [PMID: 35476184 PMCID: PMC9474354 DOI: 10.1007/s40279-022-01688-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Background Whole muscle hypertrophy does not appear to be negatively affected by concurrent aerobic and strength training compared to strength training alone. However, there are contradictions in the literature regarding the effects of concurrent training on hypertrophy at the myofiber level. Objective The current study aimed to systematically examine the extent to which concurrent aerobic and strength training, compared with strength training alone, influences type I and type II muscle fiber size adaptations. We also conducted subgroup analyses to examine the effects of the type of aerobic training, training modality, exercise order, training frequency, age, and training status. Design A systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [PROSPERO: CRD42020203777]. The registered protocol was modified to include only muscle fiber hypertrophy as an outcome. Data Sources PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically searched on 12 August, 2020, and updated on 15 March, 2021. Eligibility Criteria Population: healthy adults of any sex and age; intervention: supervised, concurrent aerobic and strength training of at least 4 weeks; comparison: identical strength training prescription, with no aerobic training; and outcome: muscle fiber hypertrophy. Results A total of 15 studies were included. The estimated standardized mean difference based on the random-effects model was − 0.23 (95% confidence interval [CI] − 0.46 to − 0.00, p = 0.050) for overall muscle fiber hypertrophy. The standardized mean differences were − 0.34 (95% CI − 0.72 to 0.04, p = 0.078) and − 0.13 (95% CI − 0.39 to 0.12, p = 0.315) for type I and type II fiber hypertrophy, respectively. A negative effect of concurrent training was observed for type I fibers when aerobic training was performed by running but not cycling (standardized mean difference − 0.81, 95% CI − 1.26 to − 0.36). None of the other subgroup analyses (i.e., based on concurrent training frequency, training status, training modality, and training order of same-session training) revealed any differences between groups. Conclusions In contrast to previous findings on whole muscle hypertrophy, the present results suggest that concurrent aerobic and strength training may have a small negative effect on fiber hypertrophy compared with strength training alone. Preliminary evidence suggests that this interference effect may be more pronounced when aerobic training is performed by running compared with cycling, at least for type I fibers. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01688-x.
Collapse
Affiliation(s)
- Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Joshua F Feuerbacher
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Marvin Sünkeler
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Moritz Schumann
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| |
Collapse
|
13
|
Compatibility of Concurrent Aerobic and Strength Training for Skeletal Muscle Size and Function: An Updated Systematic Review and Meta-Analysis. Sports Med 2022; 52:601-612. [PMID: 34757594 PMCID: PMC8891239 DOI: 10.1007/s40279-021-01587-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Both athletes and recreational exercisers often perform relatively high volumes of aerobic and strength training simultaneously. However, the compatibility of these two distinct training modes remains unclear. OBJECTIVE This systematic review assessed the compatibility of concurrent aerobic and strength training compared with strength training alone, in terms of adaptations in muscle function (maximal and explosive strength) and muscle mass. Subgroup analyses were conducted to examine the influence of training modality, training type, exercise order, training frequency, age, and training status. METHODS A systematic literature search was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically searched (12 August 2020, updated on 15 March 2021). Eligibility criteria were as follows. POPULATION healthy adults of any sex and age; Intervention: supervised concurrent aerobic and strength training for at least 4 weeks; Comparison: identical strength training prescription, with no aerobic training; Outcome: maximal strength, explosive strength, and muscle hypertrophy. RESULTS A total of 43 studies were included. The estimated standardised mean differences (SMD) based on the random-effects model were - 0.06 (95% confidence interval [CI] - 0.20 to 0.09; p = 0.446), - 0.28 (95% CI - 0.48 to - 0.08; p = 0.007), and - 0.01 (95% CI - 0.16 to 0.18; p = 0.919) for maximal strength, explosive strength, and muscle hypertrophy, respectively. Attenuation of explosive strength was more pronounced when concurrent training was performed within the same session (p = 0.043) than when sessions were separated by at least 3 h (p > 0.05). No significant effects were found for the other moderators, i.e. type of aerobic training (cycling vs. running), frequency of concurrent training (> 5 vs. < 5 weekly sessions), training status (untrained vs. active), and mean age (< 40 vs. > 40 years). CONCLUSION Concurrent aerobic and strength training does not compromise muscle hypertrophy and maximal strength development. However, explosive strength gains may be attenuated, especially when aerobic and strength training are performed in the same session. These results appeared to be independent of the type of aerobic training, frequency of concurrent training, training status, and age. PROSPERO CRD42020203777.
Collapse
|
14
|
Physical Activity and Physical Fitness among University Students-A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010158. [PMID: 35010418 PMCID: PMC8750240 DOI: 10.3390/ijerph19010158] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
The aim of this systematic review was to examine the scientific evidence regarding physical activity and physical fitness among university students. The search and analysis of the studies were done in accordance with the PRISMA guidelines. An electronic databases search (Google Scholar, PubMed, Science Direct, and Scopus) yielded 11,839 studies. Subsequently, the identified studies had to be published in English between 2011 and 2021, the experimental study had to have included males and females attending a faculty, and the participants had to have been evaluated for physical activity and fitness. A total of 21 studies were included in the quantitative synthesis, with a total of 7306 participants, both male and female. After analyzing the obtained results, it could be concluded that university students show a satisfactory level of physical activity and physical fitness. However, the results vary due to different factors involved, mostly related to the cultural differences and educational systems in different countries. As this study observes mediocre results of physical activity and physical fitness among university students, it is crucial to get their attention and awareness, to at least maintain a satisfactory level of physical activity and physical fitness.
Collapse
|
15
|
Shamim B, Camera DM, Whitfield J. Corrigendum: Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:736848. [PMID: 34393834 PMCID: PMC8356794 DOI: 10.3389/fphys.2021.736848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Baubak Shamim
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Donny M Camera
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Shamim B, Camera DM, Whitfield J. Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:625044. [PMID: 34149439 PMCID: PMC8213074 DOI: 10.3389/fphys.2021.625044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Concurrent exercise training has been suggested to create an ‘interference effect,’ attenuating resistance training-based skeletal muscle adaptations, including myofibre hypertrophy. Satellite cells support myofibre hypertrophy and are influenced by exercise mode. To determine whether satellite cells contribute to the ‘interference effect’ changes in satellite cell and myonuclear content were assessed following a period of training in 32 recreationally active males (age: 25 ± 5 year; body mass index: 24 ± 3 kg⋅m–2; mean ± SD) who undertook 12-week of either isolated (3 d⋅w–1) resistance (RES; n = 10), endurance (END; n = 10), or alternate day (6 d⋅w–1) concurrent (CET, n = 12) training. Skeletal muscle biopsies were obtained pre-intervention and after 2, 8, and 12 weeks of training to determine fibre type-specific cross-sectional area (CSA), satellite cell content (Pax7+DAPI+), and myonuclei (DAPI+) using immunofluorescence microscopy. After 12 weeks, myofibre CSA increased in all training conditions in type II (P = 0.0149) and mixed fibres (P = 0.0102), with no difference between conditions. Satellite cell content remained unchanged after training in both type I and type II fibres. Significant correlations were observed between increases in fibre type-specific myonuclear content and CSA of Type I (r = 0.63, P < 0.0001), Type II (r = 0.69, P < 0.0001), and mixed fibres (r = 0.72, P < 0.0001). Resistance, endurance, and concurrent training induce similar myofibre hypertrophy in the absence of satellite cell and myonuclear pool expansion. These findings suggest that myonuclear accretion via satellite cell fusion is positively correlated with hypertrophy after 12 weeks of concurrent training, and that individuals with more myonuclear content displayed greater myofibre hypertrophy.
Collapse
Affiliation(s)
- Baubak Shamim
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Donny M Camera
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Mpampoulis T, Methenitis S, Papadopoulos C, Papadimas G, Spiliopoulou P, Stasinaki AN, Bogdanis GC, Karampatsos G, Terzis G. Weak Association Between Vastus Lateralis Muscle Fiber Composition and Fascicle Length in Young Untrained Females. Sports (Basel) 2021; 9:56. [PMID: 33925196 PMCID: PMC8146508 DOI: 10.3390/sports9050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of the study was to investigate the relationships between vastus lateralis muscle fiber length and fiber type composition in individuals with minimal exposure to systematic resistance/power training. In sixty female physical education students (age: 21.03 ± 2.1 years, body weight: 59.8 ± 9.7 kg, body height: 166.2 ± 6.5 cm), with no experience in systematic training, lean body mass, VL muscle architecture and fiber composition type, countermovement jumping (CMJ) performance, and isometric leg press rate of force development were evaluated. Data were analyzed for all participants, as well as two equally numbered groups assigned according to their maximum countermovement jumping power (High-Power or Low-Power group). Significant but low correlations were found between type II muscle fiber percentage and fascicle length (N = 60, p < 0.05). Significant correlations were found between type IIa and IIx muscle fiber percentage cross-sectional area (%CSA) and fascicle length (N = 60; r = 0.321, and r = 0.378; respectively, p < 0.05). These correlations were higher for the High-Power group (r = 0.499, and r = 0.522; respectively, p < 0.05), and lower, and nonsignificant, for the Low-Power group. The best predictor of strength/power performance was the lean body mass of the lower extremities (r = 0.389-0.645, p < 0.05). These results suggest that in females with minimal exposure to systematic training, fascicle length may be weakly linked with type II fiber areas, only in females with high-power profiles.
Collapse
Affiliation(s)
- Thomas Mpampoulis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Constantinos Papadopoulos
- A’ Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.P.); (G.P.)
| | - Giorgos Papadimas
- A’ Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.P.); (G.P.)
| | - Polyxeni Spiliopoulou
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Angeliki-Nikoletta Stasinaki
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Gregory C. Bogdanis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Giorgos Karampatsos
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (S.M.); (P.S.); (A.-N.S.); (G.C.B.); (G.K.); (G.T.)
| |
Collapse
|
18
|
Vikmoen O, Rønnestad BR. A Comparison of the Effect of Strength Training on Cycling Performance between Men and Women. J Funct Morphol Kinesiol 2021; 6:jfmk6010029. [PMID: 33803041 PMCID: PMC8006227 DOI: 10.3390/jfmk6010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decade numerous review articles have been published on how concurrent strength and endurance training affect cycling performance. However, none of these have reviewed if there are any sex differences in the effects of concurrent training on cycling performance, and most research in this area has been performed with male cyclists. Thus, the aim of the current paper is to review the scientific literature on the effect of concurrent training on cycling performance in male and female cyclists with a special emphasis on potential sex differences. The results indicate that both male and female cyclists experience a similar beneficial effect from concurrent training on cycling performance and its physiological determinants compared to normal endurance training only. Some data indicate that women have a larger effect on cycling economy, but more studies are needed to explore this further. Furthermore, the adaptations to strength training thought to be responsible for the beneficial effects on cycling performance seem to be very similar between men and women. Interestingly, increased muscle cross-sectional area in the main locomotor muscles seems to be an important adaptation for improved performance, and, contrary to popular belief, cyclists should aim for increased muscle cross-sectional area when adding strength training to their normal training. We conclude that both male and female cyclists can improve their cycling performance by adding strength training to their normal training.
Collapse
Affiliation(s)
- Olav Vikmoen
- Department of Physical Performance, Norwegian School of Sport Sciences, 0806 Oslo, Norway
- Correspondence:
| | - Bent R. Rønnestad
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, 2418 Elverum, Norway;
| |
Collapse
|
19
|
Can Exercise-Induced Muscle Damage Be a Good Model for the Investigation of the Anti-Inflammatory Properties of Diet in Humans? Biomedicines 2021; 9:biomedicines9010036. [PMID: 33466327 PMCID: PMC7824757 DOI: 10.3390/biomedicines9010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Subclinical, low-grade, inflammation is one of the main pathophysiological mechanisms underlying the majority of chronic and non-communicable diseases. Several methodological approaches have been applied for the assessment of the anti-inflammatory properties of nutrition, however, their impact in human body remains uncertain, because of the fact that the majority of the studies reporting anti-inflammatory effect of dietary patterns, have been performed under laboratory settings and/or in animal models. Thus, the extrapolation of these results to humans is risky. It is therefore obvious that the development of an inflammatory model in humans, by which we could induce inflammatory responses to humans in a regulated, specific, and non-harmful way, could greatly facilitate the estimation of the anti-inflammatory properties of diet in a more physiological way and mechanistically relevant way. We believe that exercise-induced muscle damage (EIMD) could serve as such a model, either in studies investigating the homeostatic responses of individuals under inflammatory stimuli or for the estimation of the anti-inflammatory or pro-inflammatory potential of dietary patterns, foods, supplements, nutrients, or phytochemicals. Thus, in this review we discuss the possibility of exercise-induced muscle damage being an inflammation model suitable for the assessment of the anti-inflammatory properties of diet in humans.
Collapse
|
20
|
Pattison KJ, Drinkwater EJ, Bishop DJ, Stepto NK, Fyfe JJ. Modulation of Countermovement Jump-Derived Markers of Neuromuscular Function With Concurrent vs. Single-Mode Resistance Training. J Strength Cond Res 2020; 34:1497-1502. [PMID: 32282529 DOI: 10.1519/jsc.0000000000003587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pattison, KJ, Drinkwater, EJ, Bishop, DJ, Stepto, NK, and Fyfe, JJ. Modulation of countermovement jump-derived markers of neuromuscular function with concurrent vs. single-mode resistance training. J Strength Cond Res 34(6): 1497-1502, 2020-This study assessed changes in countermovement jump (CMJ)-derived markers of neuromuscular function with concurrent training vs. resistance training (RT) alone and determined associations between changes in CMJ parameters and other neuromuscular adaptations (e.g., maximal strength gain). Twenty-three recreationally active men performed 8 weeks of RT alone (RT group, n = 8) or combined with either high-intensity interval training cycling (HIIT + RT group, n = 8) or moderate-intensity continuous cycling (MICT + RT group, n = 7). Maximal strength and CMJ performance were assessed before (PRE), after 4 weeks of training (MID), and >72 hours (maximal strength) or >5-7 days (CMJ performance) after (POST) the training intervention. Improvements in CMJ relative peak force from both PRE to MID and PRE to POST were attenuated for both HIIT + RT (effect size [ES]: -0.44; ±90% confidence limit, ±0.51 and ES: -0.72; ±0.61, respectively) and MICT + RT (ES: -0.74; ±0.49 and ES: -1.25; ±0.63, respectively). Compared with RT alone, the change in the flight time to contraction time ratio (FT:CT) was attenuated from PRE to MID for MICT + RT (ES: -0.38; ±0.42) and from PRE to POST for both MICT + RT (ES: -0.60; ±0.55) and HIIT + RT (ES: -0.75; ±0.30). PRE to POST changes in both CMJ relative peak force and flight time:contraction time (F:C) ratio were also associated with relative 1 repetition maximum leg press strength gain (r = 0.26 and 0.19, respectively). These findings highlight the utility of CMJ testing for monitoring interference to improvements in neuromuscular function with concurrent training.
Collapse
Affiliation(s)
- Kristy J Pattison
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia.,Center for Sport Research (CSR), Deakin University, Melbourne, Australia
| | - Eric J Drinkwater
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia.,Center for Sport Research (CSR), Deakin University, Melbourne, Australia
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Nigel K Stepto
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Monash Center for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne, Victoria University and Western Health, Sunshine Hospital, St Albans, Australia; and.,Faculty of Medicine, Dentistry and Health Science, Medicine West, University of Melbourne, Melbourne, Australia
| | - Jackson J Fyfe
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia.,Center for Sport Research (CSR), Deakin University, Melbourne, Australia.,Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
21
|
Methenitis S, Mpampoulis T, Spiliopoulou P, Papadimas G, Papadopoulos C, Chalari E, Evangelidou E, Stasinaki AN, Nomikos T, Terzis G. Muscle fiber composition, jumping performance, and rate of force development adaptations induced by different power training volumes in females. Appl Physiol Nutr Metab 2020; 45:996-1006. [PMID: 32203677 DOI: 10.1139/apnm-2019-0786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the effect of 3 different eccentric-only power training volumes on muscle fiber type composition and power performance. Twenty-nine females were assigned into 3 groups and performed 10 weeks of either 3 (low volume), 6 (moderate volume), or 9 (high volume) sets/session of 4 fast-velocity eccentric-only half-squats against 70% of concentric 1-repetition maximum (1RM), followed by 3 maximum countermovement jumps (CMJs) after each set. Half-squat 1RM, CMJ height/power, maximum isometric force, rate of force development (RFD) and muscle fiber cross-sectional area (CSA) were increased in all groups (p = 0.001). Low-volume training induced higher increases in CMJ height/power and early RFD, compared with the moderate- and high-volume training programs (p < 0.001). Significant reductions in type IIx muscle fiber percentages and %CSAs were found after moderate- and high-volume training, with concomitant increases in type IIa fibers (p = 0.001). Significant correlations were found between the changes in type IIa and type IIx percentages, fiber CSA, %CSA, and the changes in performance (r: -0.787 to 0.792; p < 0.05). These results suggest that relatively large eccentric power training volumes may result in detrimental neuromuscular adaptations, minimal changes in early RFD, and a reduction of type IIx muscle fiber percentage. Novelty Low but not high volume of power training maintains type IIx muscle fibers. Early rate of force development increases after a low- or moderate-power training volume, but not after a high-power training volume. Training-induced changes in type IIx muscle fiber percentage is related with changes in early rate of force development.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 172 37, Daphne, Athens, Greece
| | - Thomas Mpampoulis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 172 37, Daphne, Athens, Greece
| | - Polyxeni Spiliopoulou
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 172 37, Daphne, Athens, Greece
| | - George Papadimas
- A'Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Leof. Vasilissis Sofias 72, Athina 115 28, Greece
| | - Constantinos Papadopoulos
- A'Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Leof. Vasilissis Sofias 72, Athina 115 28, Greece
| | - Eleanna Chalari
- Department of Nutrition and Dietetics, School of Health Science & Education, Harokopio University of Athens, 70 El. Venizelou, 17671 Athens, Greece
| | - Eftychia Evangelidou
- Department of Infection Control, G.N.N. Ionias "Konstantopouleio-Patision" Hospital, Agias Olgas 3-5, 14233, Nea Ionia, Greece
| | - Angeliki-Nikoletta Stasinaki
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 172 37, Daphne, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Science & Education, Harokopio University of Athens, 70 El. Venizelou, 17671 Athens, Greece
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, 172 37, Daphne, Athens, Greece
| |
Collapse
|
22
|
Zacharia E, Spiliopoulou P, Methenitis S, Stasinaki AN, Zaras N, Papadopoulos C, Papadimas G, Karampatsos G, Bogdanis GC, Terzis G. Changes in Muscle Power and Muscle Morphology with Different Volumes of Fast Eccentric Half-Squats. Sports (Basel) 2019; 7:sports7070164. [PMID: 31284388 PMCID: PMC6681343 DOI: 10.3390/sports7070164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
The aim of the study was to evaluate power performance and muscle morphology adaptations in response to 5 weeks of fast-eccentric squat training (FEST) performed twice per week, with three different training volumes. Twenty-five moderately trained females were assigned into three groups performing eight repetitions of FEST of either four sets (4 × 8 group; N = 9), 6 sets (6 × 8 group; N = 8) or eight sets (8 × 8 group, N = 8). Before and after the intervention, countermovement jumping height (CMJh) and power (CMJp), half squat maximal strength (1-RM), quadriceps cross-sectional area (QCSA) and vastus lateralis (VL) architecture and fiber type composition were evaluated. Significant increases (p < 0.05) were found for all groups, with no differences among them in 1-RM (4 × 8: 14.8 ± 8.2%, 6 × 8: 13.1 ± 9.2% and 8 × 8: 21.6 ± 7.0%), CMJh (4 × 8: 12.5 ± 8.5%, 6 × 8: 11.3 ± 9.3% and 8 × 8: 7.0 ± 6.2%), CMJp (4 × 8: 9.1 ± 6.0%, 6 × 8: 7.1 ± 5.2% and 8 × 8: 5.0 ± 3.9%) and QCSA (4 × 8: 7.7 ± 4.7%, 6 × 8: 9.0 ± 6.8% and 8 × 8: 8.2 ± 6.5%). Muscle fiber type distribution remained unaltered after training in all groups. VL fascicle length increased and fascicle angle decreased only in 6 × 8 and 8 × 8 groups. In conclusion, four sets of eight fast-eccentric squats/week increase lower body power and strength performance and maintain type IIX muscle fibers after 5 weeks, at least in moderately trained females.
Collapse
Affiliation(s)
- Evangelia Zacharia
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece
| | - Polyxeni Spiliopoulou
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece.
| | - Angeliki-Nikoletta Stasinaki
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece
| | - Nikolaos Zaras
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, CY-1700 Nicosia, Cyprus
| | - Constantinos Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Giorgos Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Giorgos Karampatsos
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece
| | - Gregory C Bogdanis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Daphne, 17237 Athens, Greece
| |
Collapse
|