1
|
Li X, Su H, Du L, Li G, Lv Y, Liu X, Feng L, Yu L. Effects of Compression Garments on Muscle Strength and Power Recovery Post-Exercise: A Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:438. [PMID: 40141783 PMCID: PMC11944185 DOI: 10.3390/life15030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigated the effects of compression garments on mitigating the decline in muscle strength and power resulting from exercise-induced muscle fatigue. Searches were performed in PubMed, Web of Science, EBSCO, Cochrane, and Scopus databases. The three-level restricted maximum likelihood random effects model was used to synthesize the data. Twenty-seven studies met the inclusion criteria. Compression garments had significant restorative effects on muscle strength (Hedges's g = -0.21, p < 0.01) and power (Hedges's g = -0.23, p < 0.01) after exercise-induced muscle fatigue. Subgroup analysis revealed that compression garments were effective in mitigating the decline in muscle strength when the rest intervals were 1-48 h and over 72 h and in mitigating the decline in power when the resting interval was 1-24 h. In addition, compression garments significantly mitigated the decline in muscle strength, during rest intervals of 1-24 h for trained individuals and over 72 h for both trained and untrained individuals, after exercise-induced muscle fatigue. In conclusion, compression garments significantly mitigated the decline in muscle strength after exercise-induced muscle fatigue. Both trained and untrained individuals could benefit from compression garments, with the effectiveness of compression garments being more pronounced in trained individuals compared to untrained ones.
Collapse
Affiliation(s)
- Xiang Li
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (X.L.); (Y.L.)
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (H.S.); (L.D.)
| | - Hao Su
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (H.S.); (L.D.)
| | - Liwen Du
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (H.S.); (L.D.)
| | - Gen Li
- School of Physical Education & Sports Science, South China Normal University, Guangzhou 510631, China;
| | - Yuanyuan Lv
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (X.L.); (Y.L.)
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Lin Feng
- School of Sport Sciences, Beijing Sport University, Beijing 100084, China
- Beijing Sports Nutrition Engineering Research Center, Beijing 100084, China
| | - Laikang Yu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (X.L.); (Y.L.)
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (H.S.); (L.D.)
| |
Collapse
|
2
|
Ghai S, Nilson F, Gustavsson J, Ghai I. Influence of compression garments on proprioception: A systematic review and meta-analysis. Ann N Y Acad Sci 2024; 1536:60-81. [PMID: 38722733 DOI: 10.1111/nyas.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Compression garments (CGs) are commonly used in rehabilitation and sports contexts to enhance performance and speed up recovery. Despite the growing use of CGs in recent decades, there is no unanimous consensus on their overall influence on joint proprioception. In this current meta-analysis, we aim to fill this knowledge gap by assessing the impact of CGs on joint proprioception. We conducted a literature search across seven databases and one registry. Ultimately, we included 27 studies with 671 participants. The meta-analysis revealed that wearing CGs resulted in a significant reduction in absolute error during joint position sensing (Hedges' g: -0.64, p = 0.006) as compared to no CGs. However, further analyses of variables such as constant error (p = 0.308), variable error (p = 0.541) during joint position sense tests, threshold to detect passive motion (p = 0.757), and active movement extent discrimination (p = 0.842) did not show a significant impact of CGs. The review also identified gaps in the reporting of certain outcomes, such as parameters of CGs, reporting of performance, individual-reported outcomes, and lack of placebo comparators. Consequently, this review provides guidelines for future studies that may facilitate evidence-based synthesis and ultimately contribute to a better understanding of the overall influence of CGs on joint proprioception.
Collapse
Affiliation(s)
- Shashank Ghai
- Department of Political, Historical, Religious and Cultural Studies, Karlstad University, Karlstad, Sweden
- Centre for Societal Risk Research, Karlstad University, Karlstad, Sweden
| | - Finn Nilson
- Department of Political, Historical, Religious and Cultural Studies, Karlstad University, Karlstad, Sweden
- Centre for Societal Risk Research, Karlstad University, Karlstad, Sweden
- Institute of Civil Society Research, Marie Cederschiold University, Stockholm, Sweden
| | - Johanna Gustavsson
- Department of Political, Historical, Religious and Cultural Studies, Karlstad University, Karlstad, Sweden
- Centre for Societal Risk Research, Karlstad University, Karlstad, Sweden
| | - Ishan Ghai
- School of Life Sciences, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
3
|
Grainger A, Comfort P, Twist C, Heffernan SM, Tarantino G. Real-World Fatigue Testing in Professional Rugby Union: A Systematic Review and Meta-analysis. Sports Med 2024; 54:855-874. [PMID: 38114782 DOI: 10.1007/s40279-023-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Professional rugby union is a high-intensity contact sport with position-specific high training and match volumes across a season that may lead to periods of fatigue if above a typically experienced threshold. This study assesses the influence of match play and/or training on fatigue levels in rugby union players. OBJECTIVE We aimed to perform a systematic review and meta-analysis of measures used to assess fatigue status in male professional rugby union players. METHODS Using electronic databases (PubMed, SPORTDiscus, Web of Science, Cochrane Library, EMBASE, and MEDLINE), a systematic review of fatigue testing in rugby union was conducted on (1) neuromuscular, (2) subjective self-report, (3) biochemical, and (4) heart rate-derived measures. RESULTS Thirty-seven articles were included in this systematic review, of which 14 were further included in a meta-analysis. The results of the meta-analysis revealed small, yet not significant, decreases in countermovement jump height immediately after (effect size [ES] = - 0.29; 95% confidence interval [CI] - 0.64 to 0.06), 24 h (ES = - 0.43; 95% CI - 3.99 to 3.21), and 48 h (ES = - 0.22; 95% CI - 0.47 to 0.02) after exposure to rugby union match play or training. Reported wellness (ES = - 0.33; 95% CI - 1.70 to 1.04) and tiredness (ES = - 0.14; 95% CI - 1.30 to 1.03) declined over a period of a few weeks (however, the results were not-statistically significant), meanwhile muscle soreness increased (ES = 0.91; 95% CI 0.06 to 1.75) within the 96 h after the exposure to rugby union match play or training. Finally, while cortisol levels (ES = 1.87; 95% CI - 1.54 to 5.29) increased, testosterone declined (ES = - 1.54; 95% CI - 7.16 to 4.08) within the 24 h after the exposure. However, these results were not statistically significant. CONCLUSIONS Subjective measures of muscle soreness can be used to assess fatigue after match play and training in rugby union players. Within-study and between-study variability for countermovement jump height, biochemical markers, and heart rate-derived measures means the utility (practical application) of these measures to assess fatigue in professional rugby union players after matches and training is unclear. CLINICAL TRIAL REGISTRATION PROSPERO ID: CRD42020216706.
Collapse
Affiliation(s)
- Adam Grainger
- Kitman Labs, Dublin, Ireland.
- Institute of Sport and Health, University College Dublin, Dublin, Ireland.
| | - Paul Comfort
- University of Salford, Salford, Greater Manchester, UK
- Edith Cowan University, Joondalup, WA, Australia
| | - Craig Twist
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | |
Collapse
|
4
|
Do Sports Compression Garments Alter Measures of Peripheral Blood Flow? A Systematic Review with Meta-Analysis. Sports Med 2023; 53:481-501. [PMID: 36622554 DOI: 10.1007/s40279-022-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND One of the proposed mechanisms underlying the benefits of sports compression garments may be alterations in peripheral blood flow. OBJECTIVE We aimed to determine if sports compression garments alter measures of peripheral blood flow at rest, as well as during, immediately after and in recovery from a physiological challenge (i.e. exercise or an orthostatic challenge). METHODS We conducted a systematic literature search of databases including Scopus, SPORTDiscus and PubMed/MEDLINE. The criteria for inclusion of studies were: (1) original papers in English and a peer-reviewed journal; (2) assessed effect of compression garments on a measure of peripheral blood flow at rest and/or before, during or after a physiological challenge; (3) participants were healthy and without cardiovascular or metabolic disorders; and (4) a study population including athletes and physically active or healthy participants. The PEDro scale was used to assess the methodological quality of the included studies. A random-effects meta-analysis model was used. Changes in blood flow were quantified by standardised mean difference (SMD) [± 95% confidence interval (CI)]. RESULTS Of the 899 articles identified, 22 studies were included for the meta-analysis. The results indicated sports compression garments improve overall peripheral blood flow (SMD = 0.32, 95% CI 0.13, 0.51, p = 0.001), venous blood flow (SMD = 0.37, 95% CI 0.14, 0.60, p = 0.002) and arterial blood flow (SMD = 0.30, 95% CI 0.01, 0.59, p = 0.04). At rest, sports compression garments did not improve peripheral blood flow (SMD = 0.18, 95% CI - 0.02, 0.39, p = 0.08). However, subgroup analyses revealed sports compression garments enhance venous (SMD = 0.31 95% CI 0.02, 0.60, p = 0.03), but not arterial (SMD = 0.12, 95% CI - 0.16, 0.40, p = 0.16), blood flow. During a physiological challenge, peripheral blood flow was improved (SMD = 0.44, 95% CI 0.19, 0.69, p = 0.0007), with subgroup analyses revealing sports compression garments enhance venous (SMD = 0.48, 95% CI 0.11, 0.85, p = 0.01) and arterial blood flow (SMD = 0.44, 95% CI 0.03, 0.86, p = 0.04). At immediately after a physiological challenge, there were no changes in peripheral blood flow (SMD = - 0.04, 95% CI - 0.43, 0.34, p = 0.82) or subgroup analyses of venous (SMD = - 0.41, 95% CI - 1.32, 0.47, p = 0.35) and arterial (SMD = 0.12, 95% CI - 0.26, 0.51, p = 0.53) blood flow. In recovery, sports compression garments did not improve peripheral blood flow (SMD = 0.25, 95% CI - 0.45, 0.95, p = 0.49). The subgroup analyses showed enhanced venous (SMD = 0.67, 95% CI 0.17, 1.17, p = 0.009), but not arterial blood flow (SMD = 0.02, 95% CI - 1.06, 1.09, p = 0.98). CONCLUSIONS Use of sports compression garments enhances venous blood flow at rest, during and in recovery from, but not immediately after, a physiological challenge. Compression-induced changes in arterial blood flow were only evident during a physiological challenge.
Collapse
|
5
|
Weakley J, Broatch J, O'Riordan S, Morrison M, Maniar N, Halson SL. Putting the Squeeze on Compression Garments: Current Evidence and Recommendations for Future Research: A Systematic Scoping Review. Sports Med 2022; 52:1141-1160. [PMID: 34870801 PMCID: PMC9023423 DOI: 10.1007/s40279-021-01604-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Compression garments are regularly worn during exercise to improve physical performance, mitigate fatigue responses, and enhance recovery. However, evidence for their efficacy is varied and the methodological approaches and outcome measures used within the scientific literature are diverse. OBJECTIVES The aim of this scoping review is to provide a comprehensive overview of the effects of compression garments on commonly assessed outcome measures in response to exercise, including: performance, biomechanical, neuromuscular, cardiovascular, cardiorespiratory, muscle damage, thermoregulatory, and perceptual responses. METHODS A systematic search of electronic databases (PubMed, SPORTDiscus, Web of Science and CINAHL Complete) was performed from the earliest record to 27 December, 2020. RESULTS In total, 183 studies were identified for qualitative analysis with the following breakdown: performance and muscle function outcomes: 115 studies (63%), biomechanical and neuromuscular: 59 (32%), blood and saliva markers: 85 (46%), cardiovascular: 76 (42%), cardiorespiratory: 39 (21%), thermoregulatory: 19 (10%) and perceptual: 98 (54%). Approximately 85% (n = 156) of studies were published between 2010 and 2020. CONCLUSIONS Evidence is equivocal as to whether garments improve physical performance, with little evidence supporting improvements in kinetic or kinematic outcomes. Compression likely reduces muscle oscillatory properties and has a positive effect on sensorimotor systems. Findings suggest potential increases in arterial blood flow; however, it is unlikely that compression garments meaningfully change metabolic responses, blood pressure, heart rate, and cardiorespiratory measures. Compression garments increase localised skin temperature and may reduce perceptions of muscle soreness and pain following exercise; however, rating of perceived exertion during exercise is likely unchanged. It is unlikely that compression garments negatively influence exercise-related outcomes. Future research should assess wearer belief in compression garments, report pressure ranges at multiple sites as well as garment material, and finally examine individual responses and varying compression coverage areas.
Collapse
Affiliation(s)
- Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Brisbane, QLD, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Fitzroy, VIC, Australia.
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, West Yorkshire, UK.
| | - James Broatch
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, Australia
| | - Shane O'Riordan
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, Australia
- Australia Institute of Sport, Bruce, ACT, Australia
| | - Matthew Morrison
- School of Behavioural and Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Brisbane, QLD, Australia
| | - Nirav Maniar
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Fitzroy, VIC, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, Melbourne, VIC, Australia
| | - Shona L Halson
- School of Behavioural and Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Brisbane, QLD, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Fitzroy, VIC, Australia
| |
Collapse
|
6
|
Can Compression Garments Reduce the Deleterious Effects of Physical Exercise on Muscle Strength? A Systematic Review and Meta-Analyses. Sports Med 2022; 52:2159-2175. [PMID: 35476183 PMCID: PMC9388468 DOI: 10.1007/s40279-022-01681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/13/2022]
Abstract
Background The use of compression garments (CGs) during or after training and competition has gained popularity in the last few decades. However, the data concerning CGs’ beneficial effects on muscle strength-related outcomes after physical exercise remain inconclusive. Objective The aim was to determine whether wearing CGs during or after physical exercise would facilitate the recovery of muscle strength-related outcomes. Methods A systematic literature search was conducted across five databases (PubMed, SPORTDiscus, Web of Science, Scopus, and EBSCOhost). Data from 19 randomized controlled trials (RCTs) including 350 healthy participants were extracted and meta-analytically computed. Weighted between-study standardized mean differences (SMDs) with respect to their standard errors (SEs) were aggregated and corrected for sample size to compute overall SMDs. The type of physical exercise, the body area and timing of CG application, and the time interval between the end of the exercise and subsequent testing were assessed. Results CGs produced no strength-sparing effects (SMD [95% confidence interval]) at the following time points (t) after physical exercise: immediately ≤ t < 24 h: − 0.02 (− 0.22 to 0.19), p = 0.87; 24 ≤ t < 48 h: − 0.00 (− 0.22 to 0.21), p = 0.98; 48 ≤ t < 72 h: − 0.03 (− 0.43 to 0.37), p = 0.87; 72 ≤ t < 96 h: 0.14 (− 0.21 to 0.49), p = 0.43; 96 h ≤ t: 0.26 (− 0.33 to 0.85), p = 0.38. The body area where the CG was applied had no strength-sparing effects. CGs revealed weak strength-sparing effects after plyometric exercise. Conclusion Meta-analytical evidence suggests that wearing a CG during or after training does not seem to facilitate the recovery of muscle strength following physical exercise. Practitioners, athletes, coaches, and trainers should reconsider the use of CG as a tool to reduce the effects of physical exercise on muscle strength. Trial Registration Number PROSPERO CRD42021246753. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01681-4.
Collapse
|
7
|
Brown FCW, Hill JA, Pedlar CR. Compression Garments for Recovery from Muscle Damage: Evidence and Implications of Dose Responses. Curr Sports Med Rep 2022; 21:45-52. [PMID: 35120050 DOI: 10.1249/jsr.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The use of compression garments (CG) has been associated with improved recovery following exercise-induced muscle damage. The mechanisms responsible are not well established, and no consensus exists regarding the effects of compression pressure (i.e., the "dose"), which until recently was seldom reported. With the increasing prevalence of studies reporting directly measured pressures, the present review aims to consolidate current evidence on optimal pressures for recovery from exercise-induced muscle damage. In addition, recent findings suggesting that custom-fitted garments provide greater precision and experimental control are discussed. Finally, biochemical data from human trials are presented to support a theoretical mechanism by which CG enhance recovery, with recommendations for future research. The effects of compression on adaptation remain unexplored. More studies are required to investigate the relationship between compression pressure and the recovery of performance and physiological outcomes. Furthermore, improved mechanistic understanding may help elucidate the optimal conditions by which CG enhance recovery.
Collapse
Affiliation(s)
| | - Jessica A Hill
- Faculty of Sport, Health and Applied Science, St. Mary's University, Twickenham, United Kingdom
| | | |
Collapse
|
8
|
Davis JK, Oikawa SY, Halson S, Stephens J, O'Riordan S, Luhrs K, Sopena B, Baker LB. In-Season Nutrition Strategies and Recovery Modalities to Enhance Recovery for Basketball Players: A Narrative Review. Sports Med 2021; 52:971-993. [PMID: 34905181 PMCID: PMC9023401 DOI: 10.1007/s40279-021-01606-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 01/15/2023]
Abstract
Basketball players face multiple challenges to in-season recovery. The purpose of this article is to review the literature on recovery modalities and nutritional strategies for basketball players and practical applications that can be incorporated throughout the season at various levels of competition. Sleep, protein, carbohydrate, and fluids should be the foundational components emphasized throughout the season for home and away games to promote recovery. Travel, whether by air or bus, poses nutritional and sleep challenges, therefore teams should be strategic about packing snacks and fluid options while on the road. Practitioners should also plan for meals at hotels and during air travel for their players. Basketball players should aim for a minimum of 8 h of sleep per night and be encouraged to get extra sleep during congested schedules since back-to back games, high workloads, and travel may negatively influence night-time sleep. Regular sleep monitoring, education, and feedback may aid in optimizing sleep in basketball players. In addition, incorporating consistent training times may be beneficial to reduce bed and wake time variability. Hydrotherapy, compression garments, and massage may also provide an effective recovery modality to incorporate post-competition. Future research, however, is warranted to understand the influence these modalities have on enhancing recovery in basketball players. Overall, a strategic well-rounded approach, encompassing both nutrition and recovery modality strategies, should be carefully considered and implemented with teams to support basketball players' recovery for training and competition throughout the season.
Collapse
Affiliation(s)
- Jon K Davis
- Gatorade Sports Science Institute, PepsiCo, Inc., 3800 Gaylord Parkway, Suite 210, Frisco, TX, 75034, USA.
| | - Sara Y Oikawa
- Gatorade Sports Science Institute, PepsiCo, Inc., Bradenton, FL, 34210, USA
| | - Shona Halson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Australian Institute of Sport, Canberra, Australia
| | | | - Shane O'Riordan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Australian Institute of Sport, Canberra, Australia
| | - Kevin Luhrs
- Gatorade Sports Science Institute, PepsiCo, Inc., Bradenton, FL, 34210, USA
| | - Bridget Sopena
- Gatorade Sports Science Institute, PepsiCo, Inc., Barrington, IL, 60010, USA
| | - Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo, Inc., Barrington, IL, 60010, USA
| |
Collapse
|
9
|
O'Riordan SF, McGregor R, Halson SL, Bishop DJ, Broatch JR. Sports compression garments improve resting markers of venous return and muscle blood flow in male basketball players. JOURNAL OF SPORT AND HEALTH SCIENCE 2021:S2095-2546(21)00092-2. [PMID: 34314879 PMCID: PMC10362518 DOI: 10.1016/j.jshs.2021.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The benefits associated with sports compression garments are thought to be closely related to enhanced blood flow. However, findings are equivocal, possibly due to heterogeneity in the techniques used for measuring blood flow, the garment types used, and the pressures applied. This study combined Doppler ultrasound and near-infrared spectroscopy technologies to provide the first comprehensive assessment of the effects of 3 sports compression garment types on markers of venous return and muscle blood flow at rest. METHODS Resting lower-limb blood flow measures (markers of venous return, muscle blood flow, and muscle oxygenation) of 22 elite, junior, male basketball players (age = 17.2 ± 0.9 years, mean ± SD) were assessed in 4 separate conditions: no compression (CON), compression tights (TIGHTS), compression shorts (SHORTS), and compression socks (SOCKS). Markers of venous return (cross-sectional area, time-averaged mean and peak blood flow velocity, and venous blood flow) were measured via Doppler ultrasound at the popliteal and common femoral veins. Muscle blood flow and muscle oxygenation were measured in the gastrocnemius medialis and vastus lateralis using near-infrared spectroscopy. RESULTS Popliteal markers of venous return were higher in TIGHTS compared to CON (p < 0.01) and SHORTS (p < 0.01), with SOCKS values higher compared with CON (p < 0.05). Common femoral vein markers of venous return were higher for all conditions compared to CON (p < 0.05), with TIGHTS values also higher compared to SOCKS (p < 0.05). Gastrocnemius medialis blood flow was higher for TIGHTS compared to CON (p = 0.000), SOCKS (p = 0.012), and SHORTS (p = 0.000), with SOCKS higher compared to SHORTS (p = 0.046). Vastus lateralis blood flow was higher for TIGHTS compared to CON (p = 0.028) and SOCKS (p = 0.019), with SHORTS also higher compared to CON (p = 0.012) and SOCKS (p = 0.005). Gastrocnemius medialis oxygenation was higher for TIGHTS compared to CON (p = 0.003), SOCKS (p = 0.033), and SHORTS (p = 0.003), with SOCKS higher compared to CON (p = 0.044) and SHORTS (p = 0.032). Vastus lateralis oxygenation was higher for TIGHTS compared to CON (p = 0.020) and SOCKS (p = 0.006). CONCLUSION Markers of venous return, muscle blood flow, and muscle oxygenation are increased with sports compression garments. TIGHTS are most effective, potentially because of the larger body area compressed.
Collapse
Affiliation(s)
- Shane F O'Riordan
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC 3011, Australia; Department of Physiology, Australian Institute of Sport, Bruce, ACT 2617, Australia.
| | - Rod McGregor
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia
| | - Shona L Halson
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC 3011, Australia
| | - James R Broatch
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC 3011, Australia; Department of Physiology, Australian Institute of Sport, Bruce, ACT 2617, Australia
| |
Collapse
|