1
|
Larsen S, Swinton PA, Sandberg NØ, Kristiansen BS, Fredriksen AB, Falch HN, van den Tillaar R, Wolf M. Resistance training beyond momentary failure: the effects of past-failure partials on muscle hypertrophy in the gastrocnemius. Front Psychol 2025; 16:1494323. [PMID: 39995432 PMCID: PMC11847862 DOI: 10.3389/fpsyg.2025.1494323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Muscle hypertrophy is often a desired goal of resistance training, and strategies that extend training beyond momentary failure may enhance muscular adaptations. Thus, the objective of this study was to assess whether performing additional past-failure partial repetitions beyond momentary failure increased muscle hypertrophy. A total of 23 untrained men completed a 10-week within-participant intervention study. This study comprised two weekly resistance training sessions of four sets of standing Smith machine calf raises. One limb was randomly allocated to the control condition performing sets to momentary failure (PLANTARMF), and the other limb was allocated to the test intervention that included additional past-failure partial repetitions in the lengthened position (DORSIvf). Muscle thickness of the medial gastrocnemius muscle was measured both pre- and post-intervention via ultrasound. Data were analysed within a Bayesian framework using a mixed-effect model with random effects to account for the within-participant design. The average treatment effect (ATE) was measured to assess any difference in condition and inferences made based on the ATE posterior distribution and associated Bayes Factor (BF). The main findings were that the PLANTARMF and DORSIVF legs increased medial gastrocnemius hypertrophy by 6.7 and +9.6%, respectively. The results identified an ATE favouring the inclusion of additional partial repetitions (0.62 [95%CrI: 0.21-1.0 mm; p(>0) = 0.998]) with 'strong' evidence (BF = 13.3) supporting a priori hypothesis. Therefore, when the goal is to train for maximum gastrocnemius hypertrophy over a relatively short time period, we suggest performing sets beyond momentary failure as a likely superior option.
Collapse
Affiliation(s)
- Stian Larsen
- Department of Sports Science and Physical Education, Nord University, Levanger, Norway
| | - Paul Alan Swinton
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | | | | | - Andrea Bao Fredriksen
- Department of Sports Science and Physical Education, Nord University, Levanger, Norway
| | | | | | - Milo Wolf
- Department of Exercise Science and Recreation, Applied Muscle Development Lab, CUNY Lehman College, Bronx, NY, United States
| |
Collapse
|
2
|
Larsen S, Zee MD, Tillaar RVD. The Impact of Stance Width on Kinematics and Kinetics During Maximum Back Squats. J Strength Cond Res 2025; 39:1-9. [PMID: 39652724 DOI: 10.1519/jsc.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
ABSTRACT Larsen, S, Zee, Md, and Tillaar, Rvd. The impact of stance width on kinematics and kinetics during maximum back squats. J Strength Cond Res 39(1): 1-9, 2025-This study compared the lower extremity peak net joint moments (NJMs) and muscle forces between wide and narrow stance widths defined as 1.7 and 0.7 acromion width in the last repetition of the concentric phase in 3 repetition maximum back squats. Twelve recreationally trained men (age:25.3 ± 2.9 years, height:179 ± 7.7 cm, body mass:82.8 ± 6.9 kg) volunteered for the study. The NJMs were estimated using inverse dynamics and individual muscle forces with static optimization. The main findings of interest were that the wide stance resulted in statistically smaller knee flexion angles (Cohen's d: 0.9; 95% confidence interval [CI]: -17.96 to -3.18°), knee extension NJMs [d: 1.45; 95% CI: -1.56 to -0.61 Nm·kg-1], and vastii forces [d: 1.3; 95% CI: -27.7 to -0.9.5 N·kg-1] compared with the narrow stance. Moreover, we observed significantly larger hip abduction angles [d: 3.8; 95% CI: 12.04 to 16.86°] for the wide stance. Hence, we suggest that recreationally trained men aiming to optimize muscle forces in the vastii muscles during maximum back squat training should consider adopting a narrow stance.
Collapse
Affiliation(s)
- Stian Larsen
- Department of Sports Science and Physical Education, Nord University, Levanger, Norway; and
| | - Mark de Zee
- ExerciseTech, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Roland van den Tillaar
- Department of Sports Science and Physical Education, Nord University, Levanger, Norway; and
| |
Collapse
|
3
|
Larsen S, Sandvik Kristiansen B, Swinton PA, Wolf M, Bao Fredriksen A, Nygaard Falch H, van den Tillaar R, Østerås Sandberg N. The effects of hip flexion angle on quadriceps femoris muscle hypertrophy in the leg extension exercise. J Sports Sci 2025; 43:210-221. [PMID: 39699974 DOI: 10.1080/02640414.2024.2444713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
This study compared the effects of 90° versus 40° hip flexion in the leg extension exercise on quadriceps femoris muscle hypertrophy. Twenty-two untrained men completed a ten-week intervention comprising two resistance training sessions per week. A within-participant design was used, with the lower limb side randomly allocated to the 40 or 90° condition. Muscle thickness of distal and proximal rectus femoris and vastus lateralis was quantified via ultrasound. Data were analysed within a Bayesian framework including univariate and multivariate mixed effect models with random effects to account for the within participant design. Differences between conditions were estimated as average treatment effects (ATE) and inferences were made based on posterior distributions and Bayes Factors (BF). Results indicated a greater hypertrophic response in the rectus femoris for the 40° condition, with "extreme" evidence supporting a hypertrophic response favouring the 40° hip angle for the rectus femoris (BF > 100; p(Distal/ATE & Proximal/ATE >0) > 0.999), and "strong" evidence supporting no difference in hypertrophic response for the vastus lateralis (BF = 0.07). Therefore, both conditions could be viable options for increasing quadriceps femoris hypertrophy. However, when training for maximizing rectus femoris hypertrophy among untrained men, we suggest training with a reduced hip flexion in the leg extension exercise.
Collapse
Affiliation(s)
- Stian Larsen
- Department of Sports Science and Physical Education, Nord University, Levanger, Norway
| | | | - Paul Alan Swinton
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Milo Wolf
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| | - Andrea Bao Fredriksen
- Department of Sports Science and Physical Education, Nord University, Levanger, Norway
| | | | | | | |
Collapse
|
4
|
Hopkins JE, Hopkins CE, Chiu LZF. Greater squat stance width alters three-dimensional hip moment demands. J Biomech 2024; 177:112391. [PMID: 39486379 DOI: 10.1016/j.jbiomech.2024.112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Barbell squat exercise may be performed with different stance widths, which will influence lower limb kinematics and joint reaction forces. Consequently, three-dimensional hip moments may vary with stance width, influencing muscle loading, and the muscles trained when performing squat exercise. To examine how squat stance width affects hip moments, males (n = 11) and females (n = 13) performed barbell squats at narrow, medium, and wide stance widths. Motion capture and force platform data were used to calculate three-dimensional hip net joint moments (NJM) as indicators of the muscular moments required. Hip extensor NJM was greater for wide than medium (P < 0.001) and narrow (P < 0.001) stance squats. Hip adductor NJM was not different between squat stance widths (P = 0.414). Hip lateral rotator NJM was greater in medium versus narrow squats (P < 0.001), and in wide versus medium (P < 0.001) and narrow (P < 0.001) squats. Taken together, the rotational demands at the hip increase as stance width increases, due to higher hip extensor and lateral rotator NJM. In contrast hip adductor NJM is invariant. These data provide insight into the three-dimensional requirements that muscles must meet at the hip when squat exercise is performed at different stance widths.
Collapse
Affiliation(s)
- Jane E Hopkins
- Neuromusculoskeletal Mechanics Research Program, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Claire E Hopkins
- Neuromusculoskeletal Mechanics Research Program, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Loren Z F Chiu
- Neuromusculoskeletal Mechanics Research Program, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Larsen S, de Zee M, Kristiansen EL, van den Tillaar R. A Biomechanical Comparison Between a High and Low Barbell Placement on Net Joint Moments, Kinematics, Muscle Forces, and Muscle-Specific Moments in 3 Repetition Maximum Back Squats. J Strength Cond Res 2024; 38:1221-1230. [PMID: 38900172 DOI: 10.1519/jsc.0000000000004790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Larsen, S, de Zee, M, Kristiansen, EL, and van den Tillaar, R. A biomechanical comparison between a high and low barbell placement on net joint moments, kinematics, muscle forces, and muscle-specific moments in 3 repetition maximum back squats. J Strength Cond Res 38(7): 1221-1230, 2024-This study aimed to investigate the impact of a high barbell vs. low barbell placement on net joint moments, muscle forces, and muscle-specific moments in the lower extremity joints and muscles during maximum back squats. Twelve recreationally trained men (age = 25.3 ± 2.9 years, height = 1.79 ± 7.7 m, and body mass = 82.8 ± 6.9 kg) volunteered for the study. A marker-based motion capture system and force plate data were used to calculate the net joint moments, and individual muscle forces were estimated using static optimization. Muscle forces were multiplied by their corresponding internal moment arms to determine muscle-specific moments. Statistical parametric mapping was used to analyze the effect of barbell placement as time-series data during the concentric phase. The 3 repetition maximum barbell load lifted by the subjects was 129.1 ± 13.4 kg and 130.2 ± 12.7 kg in the high bar and low bar, which were not significantly different from each other. Moreover, no significant differences were observed in net joint moments, muscle forces, or muscle-specific moments for the hip, knee, or ankle joint between the low- and high bar placements. The findings of this study suggest that barbell placement plays a minor role in lower extremity muscle forces and moment-specific moments when stance width is standardized, and barbell load lifted does not differ between barbell placements among recreationally resistance-trained men during maximal back squats. Therefore, the choice of barbell placement should be based on individual preference and comfort.
Collapse
Affiliation(s)
- Stian Larsen
- Department of Sports Science and Physical Education, Nord University, Levanger, Norway; and
| | - Mark de Zee
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Roland van den Tillaar
- Department of Sports Science and Physical Education, Nord University, Levanger, Norway; and
| |
Collapse
|
6
|
van den Tillaar R, Falch HN, Larsen S. Are Diminishing Potentiation and Large Extensor Moments the Cause for the Occurrence of the Sticking Region in Maximum Free-Weight Barbell Back Squats among Resistance-Trained Males? J Hum Kinet 2024; 91:105-119. [PMID: 38689586 PMCID: PMC11057617 DOI: 10.5114/jhk/185720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/06/2024] [Indexed: 05/02/2024] Open
Abstract
This study compared the kinematics, surface electromyography (sEMG) and kinetics among isometric squats performed at 10 different heights of the upward part and a one-repetition maximum (1-RM) squat. Eleven males (age: 27.5 ± 3.4 years, body mass: 84.9 ± 8.1 kg, body height: 1.79 ± 0.06 m, 1-RM squat: 152.2 ± 20.55 kg) took part in this study. It was found that force output was lowest in the sticking region at around the event of peak deceleration for the 1-RM trial with force output at 2179 ± 212 N. For the isometric trial, the lowest force output occurred at the lowest barbell height (1735 ± 299 N). In addition, for the 1-RM condition hip extension moments peaked at the first four barbell heights (6.5-6.2 Nm/kg) representing the pre-sticking and the sticking region before significantly decreasing during the events representing the post-sticking region. Additionally, the sEMG amplitude peaked for the hip extensors at the barbell heights corresponding to the post-sticking region. Moreover, the sEMG amplitude was significantly higher for the 1-RM condition for all hip extensors, vastus lateralis, and calf muscles (F ≥ 2.7, p ≤ 0.01, ηp2 ≥ 0.25). Therefore, we suggest that the sticking region occurs because of reduced force output in the pre-sticking and the sticking region in back squats among resistance-trained males. The reduced force output is probably a combination of suboptimal internal moment arms, length-tension relationships of the gluteus maximus, hamstring and vastii muscles in the pre-sticking and sticking regions to overcome the large extensor moments together with diminishing potentiation from the pre-sticking to the sticking region.
Collapse
Affiliation(s)
| | | | - Stian Larsen
- Department of Sports Sciences and Physical Education, Nord University, Levanger, Norway
| |
Collapse
|
7
|
Yona T, Kamel N, Cohen-Eick G, Ovadia I, Fischer A. One-dimension statistical parametric mapping in lower limb biomechanical analysis: A systematic scoping review. Gait Posture 2024; 109:133-146. [PMID: 38306782 DOI: 10.1016/j.gaitpost.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Biomechanics significantly impacts sports performance and injury prevention. Traditional methods like discrete point analysis simplify continuous kinetic and kinematic data, while one-dimensional Statistical Parametric Mapping (spm1d) evaluates entire movement curves. Nevertheless, spm1d's application in sports and injury research is limited. As no systematic review exists, we conducted a scoping systematic review, synthesizing the current applications of spm1d across various populations, activities, and injuries. This review concludes by identifying gaps in the literature and suggesting areas for future research. RESEARCH QUESTION What research exists using spm1d in sports biomechanics, focusing on the lower limbs, in what populations, and what are the current research gaps? METHODS We searched PubMed, Embase, Web of Science, and ProQuest databases for the following search string: "(((knee) OR (hip)) OR (ankle)) OR (foot) OR (feet) AND (statistical parametric mapping)". English peer-reviewed studies assessing lower limb kinetics or kinematics in different sports or sports-related injuries were included. Reviews, meta-analyses, conference abstracts, and grey literature were excluded. RESULTS Our search yielded 165 papers published since 2012. Among these, 112 examined healthy individuals (67 %), and 53 focused on injured populations (33 %). Running (n = 45), cutting (n = 25), and jumping/landing (n = 18) were the most common activities. The predominant injuries were anterior cruciate ligament rupture (n = 21), chronic ankle instability (n = 18), and hip-related pain (n = 9). The main research gaps included the unbalanced populations, underrepresentation of common sports and sport-related injuries, gender inequality, a lack of studies in non-laboratory settings, a lack of studies on varied sports gear, and a lack of reporting standardization. SIGNIFICANCE This review spotlights crucial gaps in spm1d research within sports biomechanics. Key issues include a lack of studies beyond laboratory settings, underrepresentation of various sports and injuries, and gender disparities in research populations. Addressing these gaps can significantly enhance the application of spm1d in sports performance, injury analysis, and rehabilitation.
Collapse
Affiliation(s)
- Tomer Yona
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Netanel Kamel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Galya Cohen-Eick
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbar Ovadia
- Department of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Arielle Fischer
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Salvadore AK, Jagodinsky AE, Torry MR. Individual Muscle Force Differences During Loaded Hexbar Jumps: A Statistical Parametric Mapping Analysis. Ann Biomed Eng 2023; 51:1975-1983. [PMID: 37127803 DOI: 10.1007/s10439-023-03218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Knowledge of individual muscle force during strength and conditioning exercises provides deeper understanding of how specific training decisions relate to desired training outcomes. The purpose of this study was to estimate individual muscle forces during hexbar jumps with 0%, 20%, 40%, and 60% of the hexbar deadlift 1-repetition maximum utilizing in vivo motion capture and computational modeling techniques of male participants. Muscle forces for the gluteus maximus, biceps femoris, rectus femoris, vastus intermedius, gastrocnemius, and soleus were estimated via static optimization. Changes in muscle forces over the concentric phase were analyzed across loading conditions using statistical parametric mapping, impulse, and peak values. Conclusions about the effects of load differ between the three analysis methods; therefore, careful selection of analysis method is essential. Peaks may be inadequate in assessing differences in muscle force during dynamic movements. If SPM, assessing point-by-point differences, is combined with impulse, where time of force application is considered, both timepoint and overall loading can be analyzed. The response of individual muscle forces to increases in external load, as assessed by impulse and SPM, includes increased total muscle output, proportionally highest at 20%1RM, and increased absolute force for the vasti and plantarflexors during the concentric phase of hexbar jumps.
Collapse
Affiliation(s)
- Abigail K Salvadore
- Biomechanics Laboratory, Illinois State University, Normal, IL, USA.
- Neuromuscular Biomechanics Laboratory, Department of Kinesiology, University of Massachusetts Amherst, 30 Eastman Ln, Totman Phys Ed Building, Amherst, MA, 01003, USA.
| | | | - Michael R Torry
- Biomechanics Laboratory, Illinois State University, Normal, IL, USA
| |
Collapse
|