1
|
Morris SJ, Oliver JL, Pedley JS, Radnor JM, Haff GG, Cooper SM, Lloyd RS. Kinetic Predictors of Weightlifting Performance in Young Weightlifters. J Strength Cond Res 2024; 38:1551-1560. [PMID: 39074187 DOI: 10.1519/jsc.0000000000004850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Morris, SJ, Oliver, JL, Pedley, JS, Radnor, JM, Haff, GG, Cooper, S-M, and Lloyd, RS. Kinetic predictors of weightlifting performance in young weightlifters. J Strength Cond Res 38(9): 1551-1560, 2024-Relationships between force-generating capabilities and weightlifting performance ( e.g ., snatch, clean and jerk [C&J], and combined total) have previously been explored in adult weightlifters; however, associations in young athletes are unknown. The purpose of this study was twofold: (a) to examine the relationships between countermovement jump (CMJ) and isometric midthigh pull (IMTP) kinetics and weightlifting performance in young weightlifters and (b) to determine the proportion of weightlifting performance that could be accounted for by CMJ and IMTP kinetics using principal component analysis (PCA). Thirty-seven young weightlifters (12-18 years of age) completed 3 trials of CMJ and 2 trials of the IMTP assessments on dual force plates. Recent competition maximum loads, obtained within 2 weeks of the data collection, for the C&J and snatch were also recorded. Pearson's zero-order correlation coefficients demonstrated moderate to very high correlations ( r = 0.359-0.801; all p ≤ Benjamini-Hochberg critical values [ B-Hα ]) between CMJ kinetic variables, including jump height, average braking force, average braking velocity, absolute and relative braking net impulse, absolute and relative force at minimum displacement, absolute and relative propulsive force, absolute and relative propulsive net impulse and average propulsive velocity, and weightlifting performance. High to very high correlations were evident between IMTP peak force and relative peak force and all weightlifting performance metrics (snatch, C&J, combined total, combined total [kg]/body mass [kg -0.67 ], and Sinclair's total; r = 0.538-0.796; p ≤ B-Hα ). Components from the PCA were used to conduct stepwise, multiple, linear regression analyses. Moderate (45.8-52.9%) and large percentages (79.1-81.3%) of variance in absolute measures of weightlifting performance were explained by IMTP peak force variables and CMJ propulsive variables, respectively. These novel findings indicate that IMTP peak force variables and CMJ propulsive variables could provide valuable insight for talent identification and long-term athletic development in junior weightlifting pathways.
Collapse
Affiliation(s)
- Stephanie J Morris
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jon L Oliver
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Sport Performance Research Institute, New Zealand (SPRINZ), AUT University, Auckland, New Zealand
| | - Jason S Pedley
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - John M Radnor
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia
- Directorate of Psychology and Sport, University of Salford, Salford, Greater Manchester, United Kingdom
| | - Stephen-Mark Cooper
- Cardiff School of Education and Social Policy, Cardiff Metropolitan University, Cardiff, United Kingdom; and
| | - Rhodri S Lloyd
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Sport Performance Research Institute, New Zealand (SPRINZ), AUT University, Auckland, New Zealand
- Centre for Sport Science and Human Performance, Waikato Institute of Technology, Hamilton, New Zealand
| |
Collapse
|
2
|
Zecchin A, Puggina EF, Hortobágyi T, Granacher U. Association Between Foundation Strength and Weightlifting Exercises in Highly Trained Weightlifters: Support for a General Strength Component. J Strength Cond Res 2023; 37:1375-1381. [PMID: 36728004 DOI: 10.1519/jsc.0000000000004433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Zecchin, A, Puggina, EF, Hortobágyi, T, and Granacher, U. Association between foundation strength and weightlifting exercises in highly trained weightlifters: support for a general strength component. J Strength Cond Res 37(7): 1375-1381, 2023-In addition to specific weightlifting exercises (i.e., clean and jerk and snatch), foundation strength exercises (i.e., overhead press, front squat, and deadlift) constitute an integral part of the weightlifters' training regime. The unexamined concept behind this training plan is that foundation strength exercises are associated with clean and jerk and snatch performance, implying the existence of a general strength component. We thus determined the relationship between performance in foundation strength exercises (overhead press, front squat, and deadlift) and weightlifting exercises (clean and jerk and snatch) in weightlifters. Well-trained weightlifters ( N = 19, age: 26.8 ± 4.4 years; body mass index: 27.6 ± 2.3 kg·m -2 ; and training history: 4.6 ± 0.8 years) performed 1 repetition maximum tests (1RM) in foundation strength and weightlifting exercises, over 14 days, in a randomized order. We observed significant correlations in 1RM performance between the overhead press and snatch ( r = 0.69), front squat and snatch ( r = 0.73), overhead press and clean and jerk ( r = 0.67), and front squat and clean and jerk ( r = 0.72, all r values: p < 0.01). No significant correlations were found for 1RM performance between the snatch and deadlift or between the clean and jerk and deadlift ( r- range: 0.20-0.58; p > 0.05). Stepwise linear regression revealed that 1RM performance in the overhead press and front squat explained 62% of the variance in snatch 1RM performance ( F = 5.51; p < 0.04). Overhead press and front squat 1RM performance explained 59% of the variance in the clean and jerk 1RM performance ( F = 5.14; p < 0.04). Our results demonstrate the existence of a general strength component between selected foundation strength exercises and weightlifting performance. However, the use of the front squat and overhead press to increase 1RM performance in weightlifting exercises needs to be determined in future research using a different methodological approach (i.e., longitudinal protocols), given that the observed correlations do not necessarily imply causation.
Collapse
Affiliation(s)
- Arthur Zecchin
- Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Enrico F Puggina
- Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Tibor Hortobágyi
- Hungarian University of Sports Science, Department of Kinesiology, Budapest, Hungary
- Institute of Sport Sciences and Physical Education, University of Pécs, Hungary
- Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands; and
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Comfort P, Haff GG, Suchomel TJ, Soriano MA, Pierce KC, Hornsby WG, Haff EE, Sommerfield LM, Chavda S, Morris SJ, Fry AC, Stone MH. National Strength and Conditioning Association Position Statement on Weightlifting for Sports Performance. J Strength Cond Res 2023; 37:1163-1190. [PMID: 36952649 DOI: 10.1519/jsc.0000000000004476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Comfort, P, Haff, GG, Suchomel, TJ, Soriano, MA, Pierce, KC, Hornsby, WG, Haff, EE, Sommerfield, LM, Chavda, S, Morris, SJ, Fry, AC, and Stone, MH. National Strength and Conditioning Association position statement on weightlifting for sports performance. J Strength Cond Res XX(X): 000-000, 2022-The origins of weightlifting and feats of strength span back to ancient Egypt, China, and Greece, with the introduction of weightlifting into the Olympic Games in 1896. However, it was not until the 1950s that training based on weightlifting was adopted by strength coaches working with team sports and athletics, with weightlifting research in peer-reviewed journals becoming prominent since the 1970s. Over the past few decades, researchers have focused on the use of weightlifting-based training to enhance performance in nonweightlifters because of the biomechanical similarities (e.g., rapid forceful extension of the hips, knees, and ankles) associated with the second pull phase of the clean and snatch, the drive/thrust phase of the jerk and athletic tasks such as jumping and sprinting. The highest force, rate of force development, and power outputs have been reported during such movements, highlighting the potential for such tasks to enhance these key physical qualities in athletes. In addition, the ability to manipulate barbell load across the extensive range of weightlifting exercises and their derivatives permits the strength and conditioning coach the opportunity to emphasize the development of strength-speed and speed-strength, as required for the individual athlete. As such, the results of numerous longitudinal studies and subsequent meta-analyses demonstrate the inclusion of weightlifting exercises into strength and conditioning programs results in greater improvements in force-production characteristics and performance in athletic tasks than general resistance training or plyometric training alone. However, it is essential that such exercises are appropriately programmed adopting a sequential approach across training blocks (including exercise variation, loads, and volumes) to ensure the desired adaptations, whereas strength and conditioning coaches emphasize appropriate technique and skill development of athletes performing such exercises.
Collapse
Affiliation(s)
- Paul Comfort
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - G Gregory Haff
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - Timothy J Suchomel
- University of Salford, Greater Manchester, United Kingdom
- Carroll University, Waukesha, Wisconsin
| | | | | | | | - Erin E Haff
- University of Salford, Greater Manchester, United Kingdom
- Australian Weightlifting Federation, Chandler, Australia
| | | | - Shyam Chavda
- London Sports Institute, Middlesex University, London, United Kingdom
- British Weightlifting, Leeds, United Kingdom
| | | | | | | |
Collapse
|
4
|
Gan L. TRAINING FOR PHYSICAL CONDITIONING OF YOUNG BODYBUILDING ATHLETES. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Introduction Biochemical indicators such as blood urea nitrogen and creatine kinase in young athletes are ways to test their fitness. These data provide the basis for assessing young athletes’ physical and functional fitness during training. Objective Investigate serum urea nitrogen levels and creatine kinase levels in weightlifters. Methods 12 biomarkers of athletes were tracked and observed in this article. After this study, it was found that changes were observed in their physiological parameters. These changes are usually found every three weeks. The method of mathematical statistics was used to analyze the data obtained. Results The average creatine kinase levels were significantly elevated in the first cycle. These data differ from the basal level (P<0.01). The increased serum urea nitrogen and creatine kinase levels indicate that the athlete has entered a state of fatigue. Conclusion Blood urea nitrogen and creatine kinase levels are essential in determining the degree of fatigue and sports injuries in athletes. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
Affiliation(s)
- Lu Gan
- Yangtze University, China
| |
Collapse
|
5
|
Pierce KC, Hornsby WG, Stone MH. Weightlifting for Children and Adolescents: A Narrative Review. Sports Health 2021; 14:45-56. [PMID: 34781771 DOI: 10.1177/19417381211056094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The involvement of youth in the sport of weightlifting and the use of weightlifting methods as part of training for youth sport performance appears to be increasing. Weightlifting for children and adolescents has been criticized in some circles and is a controversial aspect of resistance training for young people. Although injuries can occur during weightlifting and related activities, the incidence and rate of injury appear to be relatively low and severe injury is uncommon. A number of performance, physical, and physiological variables, such as body composition, strength, and power, are improved by weightlifting training in children, adolescents, and young athletes. Manipulating program variables, when appropriate, can have a substantial and profound influence on the psychological, physiological, physical, and performance aspects of weightlifters. An understanding of the sport, scientific training principles, and musculoskeletal growth development is necessary to properly construct a reasonable and appropriate training program. A scientific background aids in providing an evidenced basis and sound rationale in selecting appropriate methods and directing adaptations toward more specific goals and enables the coach to make choices about training and competition that might not otherwise be possible. If weightlifting training and competition are age group appropriate and are properly supervised, the sport can be substantially safe and efficacious.
Collapse
Affiliation(s)
- Kyle C Pierce
- Department of Kinesiology and Health Science, Louisiana State University Shreveport, Shreveport, Louisiana
| | - W Guy Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, West Virginia
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Sports, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|